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I. Introduction 

A regular right part grammar (RRPG) is a 
context-free grammar, in which right parts of 
productions are finite automata to extend the 
descriptive power of context-free grammar by in- 
cluding notations for describing repetitions and 
alternations [6,8]. On LR parsing of RRPGs,  ex- 
tra work is required to identify the left end of a 
handle at reduction time because a nonterminal 
can derive potentially infinite number of strings 
via a single production. 

For parsing RRPGs,  some methods such as 
grammar transformation from RRPGs  to LR(k)  
context-flee grammars [5,8], augmenting LR(0) 
automaton with readback machines to recognize 
the reverse of state sequences leading to a reduc- 
tion [2,6,7], and stacking an LR state only when 
the symbol being processed indicates the begin- 
ning of a new right part [11], are suggested. In 
stacking method, the parser is efficient because 
exactly one state entry is popped from the stack 
when the right end of a production is found. 
However, if stacking conflicts occur, the transfor- 
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mations to another R R P G  whose parser has no 
stacking conflict are necessary [11]. 

Another  method is the combination of stack- 
ing method and readback method [9]. When 
stacking conflicts occur while reading the right 
part of a production, several state entries are 
popped until one of the lookback states (in which 
parser may be restarted after reduction [2]) for a 
reduction appears. Readback states which are 
used to construct readback machine need not be 
added. Moreover, stacking conflicts are resolved 
by using lookback states without grammar trans- 
formation. Both the parser and the generation of 
the parsers are efficient [9]. In the method, the 
right parts of productions are deterministic finite 
automata. 

Our approach is based on the method of 
Nakata and Sassa [9]. Even though their method 
is very simple and can produce small and fast 
parsers if there is no stacking conflict, it requires 
a very large amount of space for realistic gram- 
mars in keeping the relations on (state, item) 
pairs [9]. To reduce space requirements, we use 
only kernel items of parser states on building the 
parser. An improved parser generation algorithm 
for RRPGs which allows the right parts of pro- 
ductions to be nondeterministic finite automata, 
is presented. It is well known that for succinct- 
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ness of classes of language descriptions, nonde- 
terministic finite automata  can be exponentially 
more succinct than deterministic finite automata  
[121. 

2.  T e r m i n o l o g y  a n d  b a s i c  d e f i n i t i o n s  

The reader  is referred to [1,12] for notations 
and definitions relating to relations, strings, lan- 
guages, and automata.  

A nondeterministic finite automaton M o = 
(Q0, V, 60, q0, F0) where Q0 is a finite set of 
states, V is a finite set of transition symbols, 
60 : Q1 x V ~  2 °0 is the state transition function, 
q0 ~ Q0 is the initial state, and F 0 ___ Q0 is the set 
of final states. 60 is extended to a mapping 
go : Q0 x V* ~ 2 Q° as follows: 

g o ( q , e ) = { q } ,  

go(q, a X ) = { P  t 3 r ~ g o ( q ,  a): P ~ 6 o ( r ,  X ) }  

where Z ~ V, a ~ V*.  

A regular rightpart grammar G = (N, 2~, P, S) 
where N and ~ are finite set of nonterminal 
symbols and terminal symbols such that N n ~ = 
~, respectively, P c_NXMN is a finite set of 
productions of the form A ~ M A where A, the 
left part, is in N and MA, the right part, is a 
nondeterministic finite automaton recognizing a 
subset of V* where M A = (QA, V, 6A, qA, FA) 
and V = N U ~,  and S ~ N is the start symbol; in 
which 

MN= U {MA}, Q =  U QA, 
A~N A~N 

A I =  U {qx}, OF = U FA, 
A~N A~N 

INI =IM~I = I Q / I ,  

and 6 is the collection of 6 A for all A in N. For 
each production A ~ M A, we write it more con- 
veniently as A ~ qA or simply A ~ q if no ambi- 
guity can arise, and the sets QA are assumed to 
be disjoint as original definition of standard form 
defined in [6]. The definitions of useless symbol 
and reduced grammar  can be adapted from con- 
text-free grammars  in a straightforward way. It 

#1:  S ~ - - -  

#2: A ~ b -- a~,,~ la a ~ 

SU-- 
#3:B ~ c ~_@ b =~) 

Fig. 1. Regular  right part g rammar  G1. 

will be assumed that RRPGs  are reduced and in 
S-augmented form [2]. Figure 1 shows an R R P G  
G1 whose productions are represented by transi- 
tion graphs. Using regular expressions, these pro- 
ductions might be written as 

S' ~ S, S ~ (alab)b*claA, 

A ~ b ( a I B c ) ,  B ~ c b .  

The formalism used in [4] to describe LR 
parsers for context-free grammars  can be adapted 
for R R P G s  with slight modifications. 

An extended LR(0) (ELR(0)) automaton for 
an R R P G  G, E L R 0 ( G ) =  (I ,  V, P, I 0, Next, Re- 
duce) where I is a finite set of states, V and P 
are as in G, I o ~ I is the start state, Next : I X V 

I is the transition function which may be a 
partial function, and Reduce:  I x ~  ~ 2 e is the 
reduce function. To avoid confusion an ELR(0) 
automaton state is referred to as a state and a 
state of production right part  is referred to as a 
right part  state. A state Iq is inconsistent iff there 
exists an a ~ such that Next(Iq, a ) ~ I  and 
Reduce(Iq,  a ) ~  ¢, IReduce(Iq,  a)l > 1, or both. 

The classical construction for building LR(0) 
automata  [3] can be applied to ELR(0) automata  
by defining an item to be a dotted right part  state 
which is of the form [A ~q:p]  or simply [p]  
where A ~ q is a production and p is its right 
part  state, and identifying ELR(0) states with sets 
of items. Each state Iq consists of kernel items 
and nonkernel items which are denoted as Ker-  
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nel(Iq) and Nonkernel(Iq). In particular, initial 
state I 0 has only nonkernel items [9]. 

An operator  0 is a mapping in the power set of 
items as used in [10], which is defined as 

O([p]} = ( [ q ]  I ~  ~N: ~(p, A) . ~  
A A - - ~ q ~ P  }. 

The closure set of an item set is given by reflexive 
transitive closure 0". A correct ELR(0) automa- 
ton is given by putting 

Io = O* {[ S' --* qs, :qs, ]}, 
Next(Iq,  Z ) =  0*~-(Iq, X ) ,  

and 

Reduce(Iq,  a)= (A ~ q ~ P l 3 [ p ]  ~I1, a ~  V*: 

P ~ ( 6 ( q ,  ot) mOr)} 

where 

~-(Iq, X )  = ( [ p ]  13[q]  ~ lq, X E V: 

p ~ 6(q ,  X ) ) .  

For example, ~([0]} = {[1]}, o([2]} = {[5]}, and ~([6]} 
= {[9]} for G1. Moreover, I o = 0"{[0]} = {[0], [1]} 
and Next(Io, a ) =  0"~-(Io, a ) =  {[2], [3], [5]} be- 
cause ~{[0]} = {[1]}, ~-(Io, a ) =  {[2], [3]}, and ~{[2]} 
= {[5]}. 

The set I is identified with the set of time sets 
recursively, which is the smallest satisfying 

I =  I 0 U {a*( Ip ) IS lq  x ~  v: I ,  = ~-(Iq, x ) } .  

The behavior and properties of an ELR(O) 
automaton can be understood in terms of transi- 
tions and paths. A transition (Iq, X)  is repre- 
sented by Iq 2~ lp, where Ip = Next(Iq, X).  A path 
is a sequence of states I0, I 1 . . . . .  I n such that for 
s o m e  X l ,  X 2 . . . . .  Xn, 

X 1 X 2 X n 

Io-~ I1-~ I2-~ "'" -~ I n - i  -~ In 

which is abbreviated I o -%*1 n where a = 
X 1X2... Xn, that is, a a c c e s s e s  I n. 

It is important to note that, whereas in the 
LR(0) automaton for a context-free grammar ac- 
cessing strings can easily be deduced from state 

sequences because each state has a unique entry 
symbol [12], in the ELR(0) automaton for an 
R R P G  accessing strings may not be deduced from 
state sequences because each state may have sev- 
eral distinct entry symbols. It comes from repeti- 
tions and alternations in the description of an 
RRPG. The number of states of ELR(0) automa- 
ton for an R R P G  may be less than that of LR(0) 
automaton for corresponding context-free gram- 
mar. Therefore,  for an RRPG, it is preferred to 
use the ELR(0) automaton rather than the LR(0) 
automaton. 

A relation T on (state, item) pairs is defined 
by 

( Iq ,[q])T(Ip ,[p])  
X 

iff 3 X ~ V :  Iq--~IpApEt~(q, X) .  

As shown in [2], 

( Iq ,[q])T*(Ip ,[p])  

iff 3 a ~ V * :  Iq-%* I p A p ~ ( q ,  ot). 

Moreover, T is the union of two different sorts of 
relation: 

( Iq , [q])rT(Ip ,[P])  

iff (I  a, [q])T(Ip, [ p ] )  A [ q ] ~ K e r n e l ( I a )  , 

(Iq,[q])NT(Ip,[P])  

iff (Iq, [q])T(Ip, [ p ] )  A [q]  ~ Nonkerne l ( Iq )  

3. Extended LALR(k) parsing of RRPGs 

An extended L A L R ( k ) ( E L A L R ( k ) )  parser for 
an R R P G  G, E L A L R k ( G ) =  (I, V, P, I0, PT) 
where I, V, P, and I 0 ~ I  are as in ELR0(G)  
except that each item in Iq ~ I is augmented with 
the set of lookahead strings of length k, respec- 
tively, and PT is a parsing table which consists of 
two parts, a parsing action function Action and a 
goto function Goto. Action is a mapping from 
I×k:,~* to subset of {shift I, stack-shift I, re- 
duce A ~ q, accept, error} where k : ~ *  denotes 
the prefix of length k of terminal string [1,12] and 
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Goto is a mapping from I × N to {goto I, stack- 
goto I}. 

The ELALR ( k )  parser can be constructed by 
computing the collection of sets of ELR(0) items 
and augmenting each item with set of lookahead 
strings of length k. The parsing actions of an 
ELA LR ( k )  parser and described in terms of rela- 
tion t- (read as moves to) defined on configura- 
tions which consist of state stack and input string. 
States and vocabularies are stacked as usual. 
However, a state which is not a lookback state for 
a reduction by particular production is not stacked 
[9,11], where lookback state is the state from 
which the ELR(0) automaton began its search for 
the handle which is about to reduce. Therefore,  a 
configuration of an ELALR(k )  parser is of the 
form ( I o a o l t a l . . .  ln_lan_llnOlnlq, z) where I i E 
I, o t i ~ V *  for all i such that O<~i<~n, z ~ Z * ,  
and Iq ~ I is the current state. 

Basic ELALR ( k )  parser for R R P G  is com- 
posed of five kinds of moves as follows: 
(1) shift Ip: 

( Ioao . . . I o ~ , I , ,  az ) ~ ( I o~o l la ,  . . . I ,  anaIs ,  Z)  

if I s = Next(1, ,  a)  and "rl(( I . ,  a)  --# O, 

(2) stack-shift Ip: 

( Io o . . . Io nlq, a z  ) 

( Io oI1 1. . . I, ,Iqals, z )  

if I s = Next(Iq,  a)  and rK(Iq ,  a ) =  O, 

(3) reduce A ~ r: 

( Io o . . . I, nI,, ) 

I-- ( IoaoI ,  at  . . . In_ lOtn_ l AIp ,  az ) 

if q ~ Q F  for [A ~ r : q ]  ~ I q ,  

k :a z  ~ L A k (  I 1, [ A ~ r : q ] ) ,  

and G o t o ( I  n, A)  = goto Is; or 

( Ioao .. . I , ,a,,I a, az ) 

I-" ( IootoI, al  . . . I , _  , a , _  , I n A I  p, az ) 

if q ~ Q F  for [A ~ r : q ]  ~ I q ,  

k : a z ~ L A k ( I 1 ,  [ A  ~ r : q ] ) ,  

and Goto(I~,  A ) =  stack-goto Ip, 

(4) accept: if configuration is of the form 
( ioSIa ' $k), 
(5) error: otherwise, 
where TK(Iq, X )  is the subset of r(Iq,  X )  such 
that 

"rK(Iq, Z )  = ([p] IStq] ~ Kernel(Iq) ,  X ~  V: 

p ~ ( q , X ) } ,  

LA k is set of lookahead strings of length k for an 
item in a state, and 

Goto( I~, A) 

' goto Ip 

= if Ip = Next( In, A )  and ZK( I n, A )  4: O, 

stack-goto Ip 

[ i f l p = N e x t ( I ~  A) and "CK(I n, A ) = 0 .  

For a transition Iq ~ Ip, if there exist items [q] 
and [q']  in Iq such that (Iq, [q])KT(Ip, [p]) and 
(Iq, [q'])NT(Ip,  [p ' ])  then stacking conflict of 
parsing action occurs [9,11]. On the other hand, if 
"rK(Iq, X )  ~ ¢ and rK(I  q, X )  ~ Kernel(Ip) for a 
transition Iq x Ip then stacking conflict occurs. 
Therefore,  it can be tested by using kernel items. 

An R R P G  G is said to be LALR(k)  R R P G  iff 
ELA LR(k )  parser for G is deterministic. To make 
ELA LR(k )  parser deterministic each entry in 
parsing table should be unique, in other words 
must exist no stacking conflict and parsing con- 
flict in the ELALR(k)  parser. 

Stacking conflicts are resolved indirectly at re- 
duction time by using lookback states [9]. Look-  
back states for a reduction by particular produc- 
tion A --* r in state Iq including an final item [q] 
of that production are defined as 

L B ( I q , [ q ] )  

= ( 'p]  Iv ~ Source(Iq,  [ q ] ) A q ~ Q F )  

where 

Source(Iq,  [q ] )  

= { I r l3 I  r ~ I :  (I~, [ r ] ) N T * ( I  o, [q])}.  

Lookback states can be computed efficiently at 
no additional time by adding the beginning states 
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to each kernel item of a state during the con- 
struction of the ELR(0) automaton. 

To resolve the stacking conflicts: (i) if stacking 
conflict of shift action occurs at read time then 
select stack-shift action, (ii) if there exists stack- 
ing conflict transition related to current reduction 
at reduction time then remove overstacked states 
from the stack until a lookback state for current 
reduction appears and perform a reduce action 
[9]. Also, if stacking conflict of goto occurs then 
select stack-goto. Additional reduce action is de- 
fined as follows: 

" reduce  A ---)r to LB(Iq ,  [ q ] ) "  is the move 

( Ioao . . . InOtnlq, az ) 

t-- ( IoaoZlal . . .  Im_lam_,AZp,  az) 

if q ~ QF for [A ~ :q] ~Iq ,  

k : a z ~ L A k ( t q ,  [A --* r : q ] ) ,  

and G o t o ( I  m. A ) = g o t o  I,; or 

( Ioao . . . Inan lq ,  aZ) 

(I0 0Ilal... Im_ lam_ l I, ,AIp, az ) 

if q ~ QF for [A ~ r:q] ~ Iq ,  

k : a z ~ L A k ( Z q ,  [A ---) r : q ] ) ,  

and Goto(  lm, A)  = stack-goto Ip 

where I m is the topmost I i such that I i 
LB(Iq,  [q]), and ama,,+l . . . a  n is reduced to A. 

The above resolution method can be applied 
to any E L A L R ( k )  grammar which can be tested 
during the construction of ELR(0) automaton by 
the following lemma (the proof of which is analo- 
gous to that of the theorem in [9]). 

Lemma. The ELALR(k )  parser for an RRPG is 
deterministic i f f  (i) parsing conflicts in inconsistent 
ELR(0) states can be resolved by using lookahead 
strings o f  length k and (ii) there does not exist a 
transition Iq ~ Ip such that there exist distinct two 
items [q],[q'] ~ Iq, [p]  ~Ip ,  [r] ,[r ' ]  ~ Ir, and 

( I q , [ q ] ) T ( I p , [ p ] )  

and (Iq, [q '])T(Zp,  [ p ] )  

where 

(Ir, [ r ]KT*( Iq ,  [q ] )  

and (I~, [ r ' ] ) N T * ( l q ,  [ q ' ] ) .  [] 

Ir [r] ~ Nonkernel( / , )  in the lemma, lookback 
state for a reduction is unique. And then the 
handle to be reduced is uniquely determined. 
Therefore,  the ELA LR(k )  parser for an R R P G  is 
deterministic iff parsing conflicts in inconsistent 
ELR(0) states can be resolved by using lookahead 
strings of length k and lookback states. 

Algorithm E. Generat ion of ELALR parser from 
ELR(0) automaton for R R P G  G with underlying 
item sets of Q. 

for Iq E I 
for X ~ V where 3Ip ~ I: Ip = Next(Iq, X )  

Action[Iq, X]:= shift Ip 
if TK(Iq, X ) =  Kernel(Ip) A X ~ ;  

Action[Iq, X] := stack-shift Ip 
if "CK(Iq, X )  -~ Kernel(Ip) A X ~ ;  

Action[Iq, X]  := goto Ip 
if TK(Iq, X )  = Kernel(Ip) A X ~ N; 

Action[Iq, X]  := stack-goto Ip 
if zr(Iq,  X )  4= Kernel(Ip) A X ~ N; 

if 7K(Iq, X )  --# O and 
rK(Iq, X )  4= Kernel(Ip) then 

for [p] ~ "rK(Iq, X )  
mark [p]  and all [r] such that 

(Ip, [p])T*(Ir,  [r]); 
for Ip ~ I where 3p  ~ QF: [A ---) q:p] ~ lp 

for z ~ LAk(Ip, A ~ q) 
Action[Ip, z] := reduce A --> q 

if [p]  is not marked; 
Action[Ip, z] 

:= reduce A ~ q to LB(Ip,  [p]) 
if [p]  is marked; 

Action[Ip, $k] := accept 
if [ S ' - *  qs':P] ~ Ip; 

Note. Algorithm E uses only kernel items. How- 
ever, when the final right part state of some 
reduce item is also initial right part state, that is, 
a production generates e, the reduce item is 
nonkernel. Such item should be used to generate 
ELALR parser in Algorithm E even though it is 
nonkernel item. 
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Example. The ELALR(1) parser for G1 is shown 
in Fig. 2 using pictorial representation for parsing 
table. "1" separates kernel items and nonkernel 
items of each state. For example, Kernel(I  2) = 
{[2], [3]} and Nonkernel(I  2) = {[5]}. The edges are 
labeled by s, g, ss, and sg denoting shift, goto, 
stack-shift, and stack-goto on X, respectively. A 
state where a reduction is possible, is annotated 
by " # "  with production number and lookahead 
set. Also, #1{$}: LB = {I 0} indicates that the ac- 
tion is reduce #1  to lookback state set {I 0} with 
lookahead set {$}. Moreover, ~'K and relation T 
only on (state, kernel item) pairs are as follows: 

rK(I2 ,  b) = {[31}, 

~-K(I2, c) = %:(12, A)  = ~'K(Is, C) = {[4]}, 

~'X(I3, b) = ~'K(Is, b) = {[31}, 

~'K(I3, B) = {[71}, 

~-K(I3, a) = ~ 'K ( I6 ,  C) = { [ 8 ] } ,  

-r/<(I 3, c) = {[4]}, 

~-K(I8, b) = {[11]}, 

(/2, [2])T(I3,  [3]), 

(12, [2])T(I4, [41), 
(•3, [3])T(I5,  [3]), 

(13, [ 6 l ) r ( I  6, [7]), 

( I  5, [31)T(I4, [41), 

(•6, [71)T(I7, [81), 

(12, [31)r(I3, [3]), 
(12, [3])T(I4, [41), 
(13, [3])T(I8, [41), 
(•3, [6])T(I7, [8]), 
(15, [31)T(15, [31), 
(18, [101)T(I9, [111). 

Action[I  o, S] = stack-goto 11 because 
%:(/0, S) = 0, Kernel(I  t) = {[12]}, and S ~ N. Ac- 
tion[I 0, a] = stack-shift 12 because ~'K(I0, a ) =  O, 
Kernel(I  2) = {[2], [3]}, and a ~ Z. Action[I2, c] = 
shift 14 because ~-K(I2, c)={[4]}, Kernel(In)= 
{[4]}, and c E X. Action[I2, A] = goto 14 because 
rK(I  2, A) = {[4]}, Kernel(I  4) = {[4]}, and A ~ N. 

There are two distinct accessing strings on the 
sequence of state lo-12-14 such as ac and aA. 
Stacking conflict occurs at the transition 12 & 13 
because rK(I2, b) = {[3]} 4= O and Kernel(I  3) = 
{[3], [6]}. Also, stacking conflict occurs at the 
transition 13 -% 18. Therefore, [3] ~ 13 is marked 
as [3]* and this marking is transferred to [3] ~ I 5, 
[4] ~ I 4, and [4] ~ 18 because (13, [3])T(I 5, [3]), 
(13, [3])T*(I4, [4]), and (13, [3])T(I s, [4]). To re- 
solve stacking conflicts, Action[I 2, b] = stack-shift 
I3, Action[I3, c] = stack-shift 18. Although 
(12, [2])T(I3, [31) and (I2, [3])T(I 3, [3]), the han- 
dle to be reduced by production S ---> 1 in state I 4 
can be uniquely determined by using lookback 
state I 0 because  (Io, [1])NT(I2, [2]) and 
(Io, [1])NT(I 2, [3]). Therefore, the action for 
lookahead {$} at 14 and 18 is "remove the states 
from stack until I 0 appears, then reduce by the 
rule #1"  because L B ( I  4, [4]) = L B ( I  s, [4]) = {I0}. 

If the input string is "abcbc$" then the parsing 
will proceed as 

• . . (Ioa12b13cls,  bc$) t-shift(1oaI2b13cbI 9, c$) 

}--reduce#3(B ~cb)( loa12bBI6, c$) 

11 I6 17 

/ f (  ,2, ) C ~ ~ ~ # 2 { $ }  

lo / 1: . ~ 18 
r ~ ~:a  w ~ ~: ~ .  ~ ~:c  ~ .  ~ # I  $}: 

,:c{ Io:A ':bl s~ ':hi 

# ,{$} :LB={I0} (  4"1 ~ 3"1 / C I I I  ) # 3 { c }  

Fig. 2. ELALR(1) parser for G1. 
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~-shif, ( IoaI2bBcI7, $) 

[--reduce#2(h -~ bBc)( I o a ZI4 ,  $) " '"  

and if "abbbc$" is given then 

• " ( I o a I 2 b I 3 ,  bbc$) t - -shi f t ( IoaI2bbI5,  bc$) 

~shi f t  ( Ioa I2bbb l s ,  c~ )  ~-shif, ( Io(lI2bbbc14, ~) 

[-reduce#1 to {I0} (S~  abbbc) ( IoS I l  ' $) " '"  • 

4. Conclusion 

We presented an improved method in genera- 
tion of efficient ELALR(k)  parsers for RRPGs, 
in which only kernel items of the ELR(0) states 
are used. It is likely to incur large space over- 
heads in explicitly keeping relations between 
(state, item) pairs [2,9]. It can be reduced by 
using only kernel items on building the parsers 
with the new operator z/~ which is used to test 
and resolve stacking conflicts. 

Moreover, in our method, right parts of pro- 
ductions of RRPGs are nondeterministic finite 
automata. During the construction of ELR(0) au- 
tomaton, fewer number of items may be required 
because nondeterministic finite automata can be 
exponentially more succinct than deterministic 
finite automata as shown in [12]. 
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