
Information Processing Letters 47 (1993) 123-129 14 September 1993
Elsevier

An improved LALR k) parser generation
for regular right part grammars
Heung-Chul Shin and Kwang-Moo Choe
Department of Computer Science, Korea Advanced Institute of Science and Technology, 373-1 Kusong-dong, Yusong-gu,
Taejon 305-701, South Korea

Communicated by L. Boasson
Received 16 December 1992
Revised 21 June 1993

Keywords: Formal languages; regular right part grammars; finite automata; extended LR(0) automaton; extended LALR(k)
parser

I. Introduction

A regular right part grammar (RRPG) is a
context-free grammar, in which right parts of
productions are finite automata to extend the
descriptive power of context-free grammar by in-
cluding notations for describing repetitions and
alternations [6,8]. On LR parsing of RRPGs, ex-
tra work is required to identify the left end of a
handle at reduction time because a nonterminal
can derive potentially infinite number of strings
via a single production.

For parsing RRPGs, some methods such as
grammar transformation from RRPGs to LR(k)
context-flee grammars [5,8], augmenting LR(0)
automaton with readback machines to recognize
the reverse of state sequences leading to a reduc-
tion [2,6,7], and stacking an LR state only when
the symbol being processed indicates the begin-
ning of a new right part [11], are suggested. In
stacking method, the parser is efficient because
exactly one state entry is popped from the stack
when the right end of a production is found.
However, if stacking conflicts occur, the transfor-

Correspondence to: H.-C. Shin, Department of Computer Sci-
ence, Korea Advanced Institute of Science and Technology,
373-1 Kusong-dong, Yusong-gu, Taejon 305-701, South Korea.

mations to another R R P G whose parser has no
stacking conflict are necessary [11].

Another method is the combination of stack-
ing method and readback method [9]. When
stacking conflicts occur while reading the right
part of a production, several state entries are
popped until one of the lookback states (in which
parser may be restarted after reduction [2]) for a
reduction appears. Readback states which are
used to construct readback machine need not be
added. Moreover, stacking conflicts are resolved
by using lookback states without grammar trans-
formation. Both the parser and the generation of
the parsers are efficient [9]. In the method, the
right parts of productions are deterministic finite
automata.

Our approach is based on the method of
Nakata and Sassa [9]. Even though their method
is very simple and can produce small and fast
parsers if there is no stacking conflict, it requires
a very large amount of space for realistic gram-
mars in keeping the relations on (state, item)
pairs [9]. To reduce space requirements, we use
only kernel items of parser states on building the
parser. An improved parser generation algorithm
for RRPGs which allows the right parts of pro-
ductions to be nondeterministic finite automata,
is presented. It is well known that for succinct-

0020-0190/93/$06.00 © 1993 - Elsevier Science Publishers B.V. All rights reserved 123

Volume 47, Number 3 I N F O R M A T I O N PROCESSING LETTERS 14 September 1993

ness of classes of language descriptions, nonde-
terministic finite automata can be exponentially
more succinct than deterministic finite automata
[121.

2. T e r m i n o l o g y a n d b a s i c d e f i n i t i o n s

The reader is referred to [1,12] for notations
and definitions relating to relations, strings, lan-
guages, and automata.

A nondeterministic finite automaton M o =
(Q0, V, 60, q0, F0) where Q0 is a finite set of
states, V is a finite set of transition symbols,
60 : Q1 x V ~ 2 °0 is the state transition function,
q0 ~ Q0 is the initial state, and F 0 ___ Q0 is the set
of final states. 60 is extended to a mapping
go : Q0 x V* ~ 2 Q° as follows:

g o (q , e) = { q } ,

go(q, a X) = { P t 3 r ~ g o (q , a): P ~ 6 o (r , X) }

where Z ~ V, a ~ V*.

A regular rightpart grammar G = (N, 2~, P, S)
where N and ~ are finite set of nonterminal
symbols and terminal symbols such that N n ~ =
~, respectively, P c_NXMN is a finite set of
productions of the form A ~ M A where A, the
left part, is in N and MA, the right part, is a
nondeterministic finite automaton recognizing a
subset of V* where M A = (QA, V, 6A, qA, FA)
and V = N U ~, and S ~ N is the start symbol; in
which

MN= U {MA}, Q = U QA,
A~N A~N

A I = U {qx}, OF = U FA,
A~N A~N

INI =IM~I = I Q / I ,

and 6 is the collection of 6 A for all A in N. For
each production A ~ M A, we write it more con-
veniently as A ~ qA or simply A ~ q if no ambi-
guity can arise, and the sets QA are assumed to
be disjoint as original definition of standard form
defined in [6]. The definitions of useless symbol
and reduced grammar can be adapted from con-
text-free grammars in a straightforward way. It

#1: S ~ - - -

#2: A ~ b -- a~,,~ la a ~

SU--
#3:B ~ c ~_@ b =~)

Fig. 1. Regular right part g rammar G1.

will be assumed that RRPGs are reduced and in
S-augmented form [2]. Figure 1 shows an R R P G
G1 whose productions are represented by transi-
tion graphs. Using regular expressions, these pro-
ductions might be written as

S' ~ S, S ~ (alab)b*claA,

A ~ b (a I B c) , B ~ c b .

The formalism used in [4] to describe LR
parsers for context-free grammars can be adapted
for R R P G s with slight modifications.

An extended LR(0) (ELR(0)) automaton for
an R R P G G, E L R 0 (G) = (I , V, P, I 0, Next, Re-
duce) where I is a finite set of states, V and P
are as in G, I o ~ I is the start state, Next : I X V

I is the transition function which may be a
partial function, and Reduce: I x ~ ~ 2 e is the
reduce function. To avoid confusion an ELR(0)
automaton state is referred to as a state and a
state of production right part is referred to as a
right part state. A state Iq is inconsistent iff there
exists an a ~ such that Next(Iq, a) ~ I and
Reduce(Iq, a) ~ ¢, IReduce(Iq, a)l > 1, or both.

The classical construction for building LR(0)
automata [3] can be applied to ELR(0) automata
by defining an item to be a dotted right part state
which is of the form [A ~q:p] or simply [p]
where A ~ q is a production and p is its right
part state, and identifying ELR(0) states with sets
of items. Each state Iq consists of kernel items
and nonkernel items which are denoted as Ker-

124

Volume 47, Number 3 INFORMATION PROCESSING LETTERS 14 September 1993

nel(Iq) and Nonkernel(Iq). In particular, initial
state I 0 has only nonkernel items [9].

An operator 0 is a mapping in the power set of
items as used in [10], which is defined as

O([p]} = ([q] I ~ ~N: ~(p, A) . ~
A A - - ~ q ~ P }.

The closure set of an item set is given by reflexive
transitive closure 0". A correct ELR(0) automa-
ton is given by putting

Io = O* {[S' --* qs, :qs,]},
Next(Iq, Z) = 0*~-(Iq, X) ,

and

Reduce(Iq, a)= (A ~ q ~ P l 3 [p] ~I1, a ~ V*:

P ~ (6 (q , ot) mOr)}

where

~-(Iq, X) = ([p] 13[q] ~ lq, X E V:

p ~ 6(q , X)) .

For example, ~([0]} = {[1]}, o([2]} = {[5]}, and ~([6]}
= {[9]} for G1. Moreover, I o = 0"{[0]} = {[0], [1]}
and Next(Io, a) = 0"~-(Io, a) = {[2], [3], [5]} be-
cause ~{[0]} = {[1]}, ~-(Io, a) = {[2], [3]}, and ~{[2]}
= {[5]}.

The set I is identified with the set of time sets
recursively, which is the smallest satisfying

I = I 0 U {a*(Ip) IS lq x ~ v: I , = ~-(Iq, x) } .

The behavior and properties of an ELR(O)
automaton can be understood in terms of transi-
tions and paths. A transition (Iq, X) is repre-
sented by Iq 2~ lp, where Ip = Next(Iq, X). A path
is a sequence of states I0, I 1 I n such that for
s o m e X l , X 2 Xn,

X 1 X 2 X n

Io-~ I1-~ I2-~ "'" -~ I n - i -~ In

which is abbreviated I o -%*1 n where a =
X 1X2... Xn, that is, a a c c e s s e s I n.

It is important to note that, whereas in the
LR(0) automaton for a context-free grammar ac-
cessing strings can easily be deduced from state

sequences because each state has a unique entry
symbol [12], in the ELR(0) automaton for an
R R P G accessing strings may not be deduced from
state sequences because each state may have sev-
eral distinct entry symbols. It comes from repeti-
tions and alternations in the description of an
RRPG. The number of states of ELR(0) automa-
ton for an R R P G may be less than that of LR(0)
automaton for corresponding context-free gram-
mar. Therefore, for an RRPG, it is preferred to
use the ELR(0) automaton rather than the LR(0)
automaton.

A relation T on (state, item) pairs is defined
by

(Iq ,[q])T(Ip ,[p])
X

iff 3 X ~ V : Iq--~IpApEt~(q, X) .

As shown in [2],

(Iq ,[q])T*(Ip ,[p])

iff 3 a ~ V * : Iq-%* I p A p ~ (q , ot).

Moreover, T is the union of two different sorts of
relation:

(Iq , [q])rT(Ip ,[P])

iff (I a, [q])T(Ip, [p]) A [q] ~ K e r n e l (I a) ,

(Iq,[q])NT(Ip,[P])

iff (Iq, [q])T(Ip, [p]) A [q] ~ Nonkerne l (Iq)

3. Extended LALR(k) parsing of RRPGs

An extended L A L R (k) (E L A L R (k)) parser for
an R R P G G, E L A L R k (G) = (I, V, P, I0, PT)
where I, V, P, and I 0 ~ I are as in ELR0(G)
except that each item in Iq ~ I is augmented with
the set of lookahead strings of length k, respec-
tively, and PT is a parsing table which consists of
two parts, a parsing action function Action and a
goto function Goto. Action is a mapping from
I×k:,~* to subset of {shift I, stack-shift I, re-
duce A ~ q, accept, error} where k : ~ * denotes
the prefix of length k of terminal string [1,12] and

125

Volume 47, Number 3 I N F O R M A T I O N PROCESSING LETTERS 14 September 1993

Goto is a mapping from I × N to {goto I, stack-
goto I}.

The ELALR (k) parser can be constructed by
computing the collection of sets of ELR(0) items
and augmenting each item with set of lookahead
strings of length k. The parsing actions of an
ELA LR (k) parser and described in terms of rela-
tion t- (read as moves to) defined on configura-
tions which consist of state stack and input string.
States and vocabularies are stacked as usual.
However, a state which is not a lookback state for
a reduction by particular production is not stacked
[9,11], where lookback state is the state from
which the ELR(0) automaton began its search for
the handle which is about to reduce. Therefore, a
configuration of an ELALR(k) parser is of the
form (I o a o l t a l . . . ln_lan_llnOlnlq, z) where I i E
I, o t i ~ V * for all i such that O<~i<~n, z ~ Z * ,
and Iq ~ I is the current state.

Basic ELALR (k) parser for R R P G is com-
posed of five kinds of moves as follows:
(1) shift Ip:

(Ioao . . . I o ~ , I , , az) ~ (I o~o l la , . . . I , anaIs , Z)

if I s = Next(1, , a) and "rl((I . , a) --# O,

(2) stack-shift Ip:

(Io o . . . Io nlq, a z)

(Io oI1 1. . . I, ,Iqals, z)

if I s = Next(Iq, a) and rK(Iq , a) = O,

(3) reduce A ~ r:

(Io o . . . I, nI,,)

I-- (IoaoI , at . . . In_ lOtn_ l AIp , az)

if q ~ Q F for [A ~ r : q] ~ I q ,

k :a z ~ L A k (I 1, [A ~ r : q]) ,

and G o t o (I n, A) = goto Is; or

(Ioao .. . I , ,a,,I a, az)

I-" (IootoI, al . . . I , _ , a , _ , I n A I p, az)

if q ~ Q F for [A ~ r : q] ~ I q ,

k : a z ~ L A k (I 1 , [A ~ r : q]) ,

and Goto(I~, A) = stack-goto Ip,

(4) accept: if configuration is of the form
(ioSIa ' $k),
(5) error: otherwise,
where TK(Iq, X) is the subset of r(Iq, X) such
that

"rK(Iq, Z) = ([p] IStq] ~ Kernel(Iq) , X ~ V:

p ~ (q , X) } ,

LA k is set of lookahead strings of length k for an
item in a state, and

Goto(I~, A)

' goto Ip

= if Ip = Next(In, A) and ZK(I n, A) 4: O,

stack-goto Ip

[i f l p = N e x t (I ~ A) and "CK(I n, A) = 0 .

For a transition Iq ~ Ip, if there exist items [q]
and [q'] in Iq such that (Iq, [q])KT(Ip, [p]) and
(Iq, [q'])NT(Ip, [p ']) then stacking conflict of
parsing action occurs [9,11]. On the other hand, if
"rK(Iq, X) ~ ¢ and rK(I q, X) ~ Kernel(Ip) for a
transition Iq x Ip then stacking conflict occurs.
Therefore, it can be tested by using kernel items.

An R R P G G is said to be LALR(k) R R P G iff
ELA LR(k) parser for G is deterministic. To make
ELA LR(k) parser deterministic each entry in
parsing table should be unique, in other words
must exist no stacking conflict and parsing con-
flict in the ELALR(k) parser.

Stacking conflicts are resolved indirectly at re-
duction time by using lookback states [9]. Look-
back states for a reduction by particular produc-
tion A --* r in state Iq including an final item [q]
of that production are defined as

L B (I q , [q])

= ('p] Iv ~ Source(Iq, [q]) A q ~ Q F)

where

Source(Iq, [q])

= { I r l3 I r ~ I : (I~, [r]) N T * (I o, [q])}.

Lookback states can be computed efficiently at
no additional time by adding the beginning states

126

Volume 47, Number 3 INFORMATION PROCESSING LETTERS 14 September 1993

to each kernel item of a state during the con-
struction of the ELR(0) automaton.

To resolve the stacking conflicts: (i) if stacking
conflict of shift action occurs at read time then
select stack-shift action, (ii) if there exists stack-
ing conflict transition related to current reduction
at reduction time then remove overstacked states
from the stack until a lookback state for current
reduction appears and perform a reduce action
[9]. Also, if stacking conflict of goto occurs then
select stack-goto. Additional reduce action is de-
fined as follows:

" reduce A ---)r to LB(Iq , [q]) " is the move

(Ioao . . . InOtnlq, az)

t-- (IoaoZlal . . . Im_lam_,AZp, az)

if q ~ QF for [A ~ :q] ~Iq ,

k : a z ~ L A k (t q , [A --* r : q]) ,

and G o t o (I m. A) = g o t o I,; or

(Ioao . . . Inan lq , aZ)

(I0 0Ilal... Im_ lam_ l I, ,AIp, az)

if q ~ QF for [A ~ r:q] ~ Iq ,

k : a z ~ L A k (Z q , [A ---) r : q]) ,

and Goto(lm, A) = stack-goto Ip

where I m is the topmost I i such that I i
LB(Iq, [q]), and ama,,+l . . . a n is reduced to A.

The above resolution method can be applied
to any E L A L R (k) grammar which can be tested
during the construction of ELR(0) automaton by
the following lemma (the proof of which is analo-
gous to that of the theorem in [9]).

Lemma. The ELALR(k) parser for an RRPG is
deterministic i f f (i) parsing conflicts in inconsistent
ELR(0) states can be resolved by using lookahead
strings o f length k and (ii) there does not exist a
transition Iq ~ Ip such that there exist distinct two
items [q],[q'] ~ Iq, [p] ~Ip , [r] ,[r '] ~ Ir, and

(I q , [q]) T (I p , [p])

and (Iq, [q '])T(Zp, [p])

where

(Ir, [r]KT*(Iq , [q])

and (I~, [r ']) N T * (l q , [q ']) . []

Ir [r] ~ Nonkernel(/ ,) in the lemma, lookback
state for a reduction is unique. And then the
handle to be reduced is uniquely determined.
Therefore, the ELA LR(k) parser for an R R P G is
deterministic iff parsing conflicts in inconsistent
ELR(0) states can be resolved by using lookahead
strings of length k and lookback states.

Algorithm E. Generat ion of ELALR parser from
ELR(0) automaton for R R P G G with underlying
item sets of Q.

for Iq E I
for X ~ V where 3Ip ~ I: Ip = Next(Iq, X)

Action[Iq, X]:= shift Ip
if TK(Iq, X) = Kernel(Ip) A X ~ ;

Action[Iq, X] := stack-shift Ip
if "CK(Iq, X) -~ Kernel(Ip) A X ~ ;

Action[Iq, X] := goto Ip
if TK(Iq, X) = Kernel(Ip) A X ~ N;

Action[Iq, X] := stack-goto Ip
if zr(Iq, X) 4= Kernel(Ip) A X ~ N;

if 7K(Iq, X) --# O and
rK(Iq, X) 4= Kernel(Ip) then

for [p] ~ "rK(Iq, X)
mark [p] and all [r] such that

(Ip, [p])T*(Ir, [r]);
for Ip ~ I where 3p ~ QF: [A ---) q:p] ~ lp

for z ~ LAk(Ip, A ~ q)
Action[Ip, z] := reduce A --> q

if [p] is not marked;
Action[Ip, z]

:= reduce A ~ q to LB(Ip, [p])
if [p] is marked;

Action[Ip, $k] := accept
if [S ' - * qs':P] ~ Ip;

Note. Algorithm E uses only kernel items. How-
ever, when the final right part state of some
reduce item is also initial right part state, that is,
a production generates e, the reduce item is
nonkernel. Such item should be used to generate
ELALR parser in Algorithm E even though it is
nonkernel item.

127

Volume 47, Number 3 I N F O R M A T I O N PROCESSING LETTERS 14 September 1993

Example. The ELALR(1) parser for G1 is shown
in Fig. 2 using pictorial representation for parsing
table. "1" separates kernel items and nonkernel
items of each state. For example, Kernel(I 2) =
{[2], [3]} and Nonkernel(I 2) = {[5]}. The edges are
labeled by s, g, ss, and sg denoting shift, goto,
stack-shift, and stack-goto on X, respectively. A
state where a reduction is possible, is annotated
by " # " with production number and lookahead
set. Also, #1{$}: LB = {I 0} indicates that the ac-
tion is reduce #1 to lookback state set {I 0} with
lookahead set {$}. Moreover, ~'K and relation T
only on (state, kernel item) pairs are as follows:

rK(I2 , b) = {[31},

~-K(I2, c) = %:(12, A) = ~'K(Is, C) = {[4]},

~'X(I3, b) = ~'K(Is, b) = {[31},

~'K(I3, B) = {[71},

~-K(I3, a) = ~ 'K (I6 , C) = { [8] } ,

-r/<(I 3, c) = {[4]},

~-K(I8, b) = {[11]},

(/2, [2])T(I3, [3]),

(12, [2])T(I4, [41),
(•3, [3])T(I5, [3]),

(13, [6 l) r (I 6, [7]),

(I 5, [31)T(I4, [41),

(•6, [71)T(I7, [81),

(12, [31)r(I3, [3]),
(12, [3])T(I4, [41),
(13, [3])T(I8, [41),
(•3, [6])T(I7, [8]),
(15, [31)T(15, [31),
(18, [101)T(I9, [111).

Action[I o, S] = stack-goto 11 because
%:(/0, S) = 0, Kernel(I t) = {[12]}, and S ~ N. Ac-
tion[I 0, a] = stack-shift 12 because ~'K(I0, a) = O,
Kernel(I 2) = {[2], [3]}, and a ~ Z. Action[I2, c] =
shift 14 because ~-K(I2, c)={[4]}, Kernel(In)=
{[4]}, and c E X. Action[I2, A] = goto 14 because
rK(I 2, A) = {[4]}, Kernel(I 4) = {[4]}, and A ~ N.

There are two distinct accessing strings on the
sequence of state lo-12-14 such as ac and aA.
Stacking conflict occurs at the transition 12 & 13
because rK(I2, b) = {[3]} 4= O and Kernel(I 3) =
{[3], [6]}. Also, stacking conflict occurs at the
transition 13 -% 18. Therefore, [3] ~ 13 is marked
as [3]* and this marking is transferred to [3] ~ I 5,
[4] ~ I 4, and [4] ~ 18 because (13, [3])T(I 5, [3]),
(13, [3])T*(I4, [4]), and (13, [3])T(I s, [4]). To re-
solve stacking conflicts, Action[I 2, b] = stack-shift
I3, Action[I3, c] = stack-shift 18. Although
(12, [2])T(I3, [31) and (I2, [3])T(I 3, [3]), the han-
dle to be reduced by production S ---> 1 in state I 4
can be uniquely determined by using lookback
state I 0 because (Io, [1])NT(I2, [2]) and
(Io, [1])NT(I 2, [3]). Therefore, the action for
lookahead {$} at 14 and 18 is "remove the states
from stack until I 0 appears, then reduce by the
rule #1" because L B (I 4, [4]) = L B (I s, [4]) = {I0}.

If the input string is "abcbc$" then the parsing
will proceed as

• . . (Ioa12b13cls, bc$) t-shift(1oaI2b13cbI 9, c$)

}--reduce#3(B ~cb)(loa12bBI6, c$)

11 I6 17

/ f (,2,) C ~ ~ ~ # 2 { $ }

lo / 1: . ~ 18
r ~ ~:a w ~ ~: ~ . ~ ~:c ~ . ~ # I $}:

,:c{ Io:A ':bl s~ ':hi

,{$} :LB={I0} (4"1 ~ 3"1 / C I I I) # 3 { c }

Fig. 2. ELALR(1) parser for G1.

128

Volume 47, Number 3 INFORMATION PROCESSING LE'Iq'ERS 14 September 1993

~-shif, (IoaI2bBcI7, $)

[--reduce#2(h -~ bBc)(I o a ZI4 , $) " '"

and if "abbbc$" is given then

• " (I o a I 2 b I 3 , bbc$) t - -shi f t (IoaI2bbI5, bc$)

~shi f t (Ioa I2bbb l s , c~) ~-shif, (Io(lI2bbbc14, ~)

[-reduce#1 to {I0} (S~ abbbc) (IoS I l ' $) " '" •

4. Conclusion

We presented an improved method in genera-
tion of efficient ELALR(k) parsers for RRPGs,
in which only kernel items of the ELR(0) states
are used. It is likely to incur large space over-
heads in explicitly keeping relations between
(state, item) pairs [2,9]. It can be reduced by
using only kernel items on building the parsers
with the new operator z/~ which is used to test
and resolve stacking conflicts.

Moreover, in our method, right parts of pro-
ductions of RRPGs are nondeterministic finite
automata. During the construction of ELR(0) au-
tomaton, fewer number of items may be required
because nondeterministic finite automata can be
exponentially more succinct than deterministic
finite automata as shown in [12].

References

[1] A.V. Aho and J.D. Ullman, The Theory of Parsing, Trans-
lation, and Compiling, Vols. 1 and 2 (Prentice-Hall, En-
glewood Cliffs, NJ, 1972 and 1973).

[2] N.P. Chapman, LALR(1, 1) parser generation for regular
right part grammars, Acta Inform. 21 (1984) 29-45.

[3] F.L. DeRemer, Simple LR(k) grammars, Comm. ACM
14 (1971) 453-460.

[4] F.L. DeRemer and T.J. Pennello, Efficient computation
of LALR(1) lookahead sets, ACM Trans. Programming
Language Systems 4 (1982) 615-649.

[5] S. Heilbrunner, On the definition of ELR(k) and ELL(k)
grammars, Acta Inform. 11 (1979) 169-176.

[6] W.R. LaLonde, Regular right part grammars and their
parsers, Comm. ACM 20 (1977) 731-741.

[7] W.R. LaLonde, Constructing LR parsers for regular right
part grammars, Acta Inform. 11 (1979) 177-193.

[8] O.L. Madsen and B.B. Kristensen, LR-parsing of ex-
tended context free grammars, Acta Inform. 7 (1976)
61-73.

[9] I. Nakata and M. Sassa, Generation of efficient LALR
parsers for regular right part grammars, Acta Inform. 23
(1986) 149-162.

[10] J.C.H. Park, K.M. Choe and C.H. Chang, A new analysis
of LALR formalisms, ACM Trans. Programming Lan-
guages Systems 7 (1985) 159-175.

[11] P.W. Purdom and C.A. Brown, Parsing extended LR(k)
grammars, Acta Inform. 15 (1981) 115-127.

[12] S. Sippu and E. Soisalon-Soininen, Parsing Theory, Vols.
1 and 2 (Springer, Berlin, 1990).

129

