
Information Processing Letters 47 (19Y3) 245-25 1 
Elsevier 

8 October 1993 

On the reduction of LR( k) parsers * 
Woo-Jun Park 
Department of Computer Science, Korea Adcanced institute of Science and Technology, 373-1, Kusong-Dong, Yusung-Gu, 
Taejon 305-701, South Korea 

Myung-Joon Lee 
Department of Computer Science, Unicersity of Wan, P.O. Box I8, Wan, Kyung-Nam 680-719, South Korea 

Kwang-Moo Choe 
Department of Computer Science, Korea Advanced Institute of Science and Technology, 373-1, Kusong-Dong, Yusung-Gu, 
Taejon 30.5701, South Korea 

Communicated by K. Ikeda 

Received 2 July 1992 

Revised 25 December 1992 and 8 July 1993 

Abstract 

Park, W.-J., M.-J. Lee and K.-M. Choe, On the reduction of LR(k) parsers. Information Pocessing Letters 47 (1993) 

245-251. 

The problem of reducing the number of states in a given LR(k) parser is treated from the standpoint of static merging, 
introducing a well-defined reduction of the parser. In addition, a locaNy optimal reduction is presented as a method for 

reducing the number of states. 
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1. Introduction 

Since the invention of LR(k) grammars [5], a 
great number of works have been carried out to 
construct the parsers for those grammars, trying 
to reduce their parsing tables as small as possible. 
As a part of such efforts, SLR(k)/LALR(k) 
parsing [2,31 gained general acceptance by utiliz- 
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ing LR(0) states and appropriate lookahead in- 
formation; however, when a given LR(k) gram- 
mar fails to be LALR(kG), an equivalent LALR(k) 
grammar should be obtained by transforming the 
LR(k) grammar. Such a transformation might 
require much computation, leading often to a 
grammar of somewhat unacceptable size [6]. 

Pager [7] introduced the notion of compatible 
states and proposed a core-restricted method 
which merges compatible states with common 
cores; in addition, the method merges those states 
dynamicalZy, i.e., during the parser construction - 
not after constructing the full LR(k) parsing table. 
The notion of compatible states, which means the 
merging of those states introduces no parsing 
conflict, was elegantly revisited by Heilbrunner 
with item grammars and parsing automata [4]. 
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In this paper, the notion of compatible states 
is tackled again from the standpoint of sratic 
merging - the merging of LR(k)states after con- 
structing the full LR(k) parsing table. By utilizing 
it, we develop a new formalism for merging states 
with a common core without causing any conflict, 
introducing a new notion well-defined reduction 
(WDR) of an LR(k) parser. We define an optimal 
reduction which is described using the notion 
WDR. We also introduce a locally optimal reduc- 
tion of an LR(k) parser which is a useful core-re- 
stricted method, as an approximation to an opti- 
mal reduction. 

The organization of this paper is as follows. 
After reviewing the related notation and defini- 
tions concerning LR(k) parsers and set theory, a 
new relation for merging LR(k) states is given. 
Then, a well-defined reduction of an LR(k) parser 
and a naive algorithm which computes a well-de- 
fined reduction and an LR(k)-based parser asso- 
ciated with the reduction, are developed. In addi- 
tion, a locally optimal reduction and an optimal 
reduction of an LR(k) parser are discussed. 

2. Notation and definitions 

It is assumed that the reader is familiar with 
the notations and conventions of the reference [l] 
concerning LR(k) parsers. In particular, the fol- 
lowing concepts are used extensively: the relation 
=> (rightmost derivation), FIRST,, EFF,, 
LRc)-item, lookahead, and the function closure. 
In the following, we shall repeat some of Aho 
and Ullman’s definitions and a few definitions in 
the set theory [ll], sometimes in a modified form. 
A context-free grammar (CFG) is a 4-tuple G = 
(N, Xc, P, S), where N is a finite set of nontermi- 
n&s; 2 is a finite set of terminals such that 
N n C = $! ; P is a finite subset of N X V *, where 
V (vocabulary) stands for N u 2 and each mem- 
ber (A, (Y) of P is called a production, written 
A --, CY; and S is the start symbol. For the conve- 
nient description of LR(k) parsing, G is assumed 
to be augmented in the sense that P contains a 
special (start) production S’ -+ S, where S’ does 
not occur in any other production. In addition, 
we assume that 2 includes a special endmarker, 
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denoted .‘S”. which does not occur in any produc- 
tion. An LR( k )-item [A + a . /?, u] is said to be a 
kernel item [8], if cr + E or A = S’. If q is a set of 
items, we denote: 

kernef( q) = {I E q I I is a kernel item}, 

semikernel(q)=kernef(q)u{A+~IA+~Eq}. 

The set of all LR(k)-items with a dotted produc- 
tion A -cr./3 in a state is denoted as [A-a. 
p, U] where iJ is a set of the lookaheads in those 
items. We call such set of items as an item group 
of the state. 

Definition 2.1 (LR automaton [1,4,6]). The LR(k) 
automaton for G is defined by a 5tuple, 

where C,, the canonical collection of sets of 
LR(k) items for G, is defined recursively by 

with qOIk = closure({[S’ + -S, $1)) and 

6,(q, X) =cfosure([[A -cYX.~? u]I 

[A -+(Y.XP, ul Eq}). 

The notation “Q =sf(QY’ means that Q is the 
smallest set which satisfies the condition Q = 
f(Q). An element of C, is said to be an LR(k) 
state for G. The domain of the function 6, is 
extended to C, x I/ * or 2’k x V * as follows: 

6,(q, E) =4 

and 6,(q, XY) =&(&(q, X), Y) 

or s,(Qt a) = {&(a a> Iq E Q}. 

We denote the LR(0) automaton for G by M,(G) 
=(C,, V, So, qozo, $1. A function core is a map- 
ping from a set of LR(k)-items to a set of LR(O)- 
items, defined by core(q) = ([A ---f (Y .pII[A -+ ct. 
p, u] E q}. A (core-restricted) parsing automaton 
for G, M(G) = (Q, V, S, qo, @> is said to be 
LR(k)-based if every state in Q is a collection of 
LR(k) states with a common core; 6: Q X I/+ Q 
is a (state transition) function such that core(d(q. 
X)) = G,(core(q), X), q E Q, where the domain 
of function core is extended to 2O by core(q) = 
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(I E core(q)\ 4 E q}; qO, the initial state of M, is 
(qozk}. Obviously, M(G) has the correct prefix 
property. 

Definition 2.2 [ll] (Partition and cocering of a 

set). Let .Y be a given set and Q = (T,, T2,. . . , T,} 
where each T,, i = 1,. . . , m, is a subset of 9 and 
lJ ;l ,q =Y. Then the set Q is called a col.ering 
of 9, and the sets T,, T,,. . . , T, are said to 
col’er 9. If, in addition, the elements of Q, which 
are subsets of 9, are mutually disjoint, then Q is 
called a partition of 9, and the sets T,, T,, . . . , T,,, 
are called Hocks of the partition. 

Definition 2.3 (Core-equicalence partition). The 
core-equivalence partition of C’, in M,(G) is a 
partition (Bq,, Bq,, . . , Bq,,-,) where B,, (qi E 
C,) is the set of states in C, which have a 
common core qi (i.e. B,, = {p I core(p) = qi, p E 
C,}). Each BGz is said to be a core block associ- 
ated with LR(O)-state qi of the partition. 

3. Compatible LR(k) states 

To reduce the size of a given LR(k) parser, a 
group of LR(k) states in a core block can be 
merged into one; but, in general, the merging of 
those states might cause parsing conflicts. If the 
merging of LR(k) states p and q causes no 
parsing conflict, then the states p and q are said 
to be compatible. In this section, we define a new 
relation for finding those compatible LR(k) 
states. Throughout this section, X is a symbol in 
V and S is the function 6, in Definition 2.1. 

We begin by introducing a new relation C, 
which holds for sets of LR(k) items such that the 
union of those sets does not exhibit any parsing 
conflict in the resulting set. 

Definition 3.1 (Temporarily compatible). Let p 
and q be sets of LR(k) = items. Then, p C, q iff 
core(p) = core(q) and for every pair of item 
groups such that [A+cu.p, U], [B-+y., W]E 
p, [A+cu.p, U’l, [B+y., W’lcq, where A 
-*cr.p#B-+y*, IVnEFF,(/3U’)=@ and W’ 
n EFF,(PlJ) = $. 

Obviously, if p C, q, neither shift-reduce nor 
reduce-reduce parsing conflict occurs in p U q. 
Using relation C,, relation compatible is defined 
recursively: 

Definition 3.2 (Compatible). ’ Let p and q be 
LR(k) states. Then, 

pCq iff 

p c, 4 A (VX) q P, Xl c qrl. X)7 

where XE {Xl6(p, X) fp or 6(q, X) +q}. 

Let p and q be sets of LR(k) states. The domain 
of relation compatible can be extended to a set 
of LR(k) states as the following. p C q iff for all 

(P, 4) EP x 49 P c 4. 

In other words, two LR(k) states are compati- 
ble iff those states are temporarily compatible and 
all of their successor states transited by the same 
symbol are compatible. 

Property 3.3 (i) C and C, are compatibility rela- 

tions [ll], which are reflexice and s)‘mmetric. 

(ii) Let p, q E C, and (Y E V *. If p C q, then 

Wcr) 6(p* (Y) c 6(q, (u). 

Relation C, on sets of LR(k) states can be 
computed by examining only their semikernels as 
is shown below. 

Theorem 3.4. Let p and q be LR(k) states. Then, 

p C, q iff semikernel C, semikernel( 

The proof of the theorem is described in refer- 
ence [9]. 

Instead of computing relation C directly, we 
compute the complement of the relation since 
Tarski’s fixed-point theorem [lo] can be easily 
applied to the computation of the complement. 
Reference [9] provides an algorithm which com- 
putes the complement of C on C, using the 
theorem. 

’ So far as dynamic merging is concerned. one might refer to 
the non-recursive relations in the case of k = 1, introduced 

by Pager [7] and by Heilbrunner [J]. 
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4. Reduction of LR(k) parsers 

4.1. Well-defined reductions 

Given the LR(k) parser for a CFG G, as was 
discussed in the previous section, compatible 
LR(k1 states in a core block of the parser can be 
merged into a single state without causing any 
conflict. At the first sight, the problem of decid- 
ing which compatible states in the block might be 
merged for constructing an LR(k)-based parser 
for G, appears to be the problem of finding a 
partition of the block. However, it is the problem 
of finding a covering of the block as the following 
example shows. 

Example 4.1 (Needs for col;erings). In Fig. 1, 
assume that the pairs (1, 2) and (3, 4) are in 
relation C on a core block associated with 4 E C,. 
If the two states of each pair are merged to- 
gether, then the X-successors of merged states 
(i.e. 6({1, 2}, X) and S((3, 4}, X)) should include 
(11, 12) and (12, 141, respectively. Note that state 
12 has to be included in both of the successors. 
Thus ((11,12), (12,14)) is a covering of {11,12,141. 

For describing the reduction of LR(k) parsers, 
a fundamental definition is given: 

Definition 4.2 (Reduction of an LR(k) parser). 
Let (n,, II,, . . . , Il,J be the core-equivalence par- 
tition of an LR(k) parser, and & be a covering 
of fli for 1 Q i Q n. Then the collection 

W,, x*9..., Zn} is said to be a reduction of the 
LR(k) parser. 

To be free of any parsing conflict when those 
states in an element of 4 (in Definition 4.2) 

4 E co 

form a new state in an LR(k)-based parser, re- 
ductions should be intro-consistent : 

Definition 4.3 (Zntra-consistent reduction). Let Q 
be a set of LR(k) states with a common core. A 
C-coceting of set 9 is a covering of .Y such that 
relation C holds for any pair in a member of the 
covering. A reduction (Z,, Zz,. . . , Xn} of an 
LR(k) parser is intru-consistent iff each .F (1 < i 
< n) is a C-covering of the associated core block. 

In addition, the relationship between the cov- 
erings of the core blocks should be considered so 
that the language accepted by the aimed LR(k)- 
based parser might not differ from that of the 
original LR(k) parser, as is captured by the fol- 
lowing definition. 

Definition 4.4 (Goto-consistent reduction >. Let X 
E V, and 4 and q. be coverings of the core 
blocks of an LR(k) parser. Then &. is goto-con- 
sistent with Xj iff for each K E&, Xj contains an 
element including ak(~, X) whenever 4 is a 
covering of the core block with core pO and Zj is 
a covering of the core block with dO(pO, X). A 
reduction (Zi, x2,. . . , Zn} is said to be goto- 
consistent iff 4 is goto-consistent with Xj for all 
i, j (1 < i, j Q n). 

The above discussion leads to a new notion 
well-defined reduction from which an LR(k)-based 
parser can be naturally obtained. 

Definition 4.5 (Well-defined reduction (WDR) of 
an LR(k) parser). A reduction {xi, Z1,. . . , 3,) 
of an LR(k) parser is said to be well-defined 
when it is intra-consistent and goto-consistent. 

6”@v~ co 

&(l, X) = II, &(2> x> = 12, &(3, X) = 12. &(4, x) = 14 

Fig. 1. State transitions and relations on two core blocks. 
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Definition 4.6 (LR(k)-based parser conformable to 
a WDR). An LR(k)-based automaton M(G) = 
<Q, V, 6, qO, @> is conformable to a WDR 
ix,, x2,. . . , Zn] of M,(G) = CC,, I’, 6,, qO,k, ti) 
if it satisfies the following conditions: 

(i)Q=(&cE&, l<i<n), 
(ii) q. = 140:k1, and 

(iii) 8(~, X) is defined if some Zj (1 <j d n> 
contains an element which includes ak(~, Xl. 

Basically, an LR(k)-based parsing automaton 
M(G) conformable to a KDR of M,(G) has the 
correct prefix property from Definition 2.1. Ac- 
cording to Definition 4.3, no state of M(G) ex- 
hibits any parsing conflict. Further, Definition 4.4 
says that if S * &YX, 4 = ak(qO:k, Y) and 4 = 
Hq,, y>, then q is contained in q. Hence, the 
parsing actions for a given string to be performed 
by M(G) are equivalent to the parsing actions for 
the string by M,(G). 

For a given LR(k) parser, a naive algorithm 
for computing a WDR of the parser and a parsing 
automaton conformable to the WDR is presented 
in the following. In this algorithm, if T is a 
collection of sets of LR(k) states, the union of all 
the elements of T is denoted as uncocer(T). For 
example, if ((1, 21, 12, 3]} is a new LR(k)-based 
state, then the state can be identified by (1, 2, 3) 
(= rtncouer(111, 2], 12, 3)))) since an LR(k)-based 
state is characterized by the LR(k) states which 
constitute the state according to Definition 2.1. A 

running example for the algorithm is given in 
reference [9]. 

Algorithm 4.7 (Computation of a WDR of an 
LR(k) parser and an LR(k)-based parsing au- 
tomaton conformable to the WDR). 

Input: M,(G) = CC,, V, a,, qOIk, (d), M&G) = 
(Cl), v, 60, qo:o, $1, 
R / * the relation matrix of C on C, */ 

Output: Ix’, 1 q E Co1 / * a WDR of M,(G) */, 
M(G) = (Q, V, 6, qo, @I / * an LR(k)-based 
parsing automaton conformable to the 
WDR */ 

Method: 
1. Q+@; 6+-g; 

2.foreachq~C~doZ~+({p~Ip~C~,core(p) 
= q} / * initially, no Zq is checked off 
*/ endfor; 

3. Merge (qozo). / * merging states */ 

procedure Merge(q) / * q E Co */ 

Q + Q -zq; 
compute the relation C on Zq using R; 
7, + a C-covering of Z$ 
Zq + (uncor.er(7) I 7 E S,); 
Q+QuXq; 
check off Zg; 

/* modify the transitions from predecessors, and 
delete obsolete transitions */ 

for each r E Yq do 
for each r E Tdo 

for each p such that 3E E V with 6(p, E) 
= r do / * E is the entry symbol of state 

rl */ 
S + S - ((p, E, r>l; S + 6 u ((p, E, un- 
cocer(T>>}; / * uncoUer(7): a new 
state */ 

endfor 
for each s such that AXE V with 6(r, X> 
= s do S +- 6 - ((r, X, s)) endfor 

endfor 
endfor; 
/ * add or modify transitions to successors “/ 
for each XE V such that 6,(q, Xl is defined do 

for each K EXq do 
K _cucc + ~,(Z Xl; 

if K succ C K’ for some K’ EXdoc4~Xj then 
6 + 6 U {(K, X, ~‘1); if ~&~4,x~ is not 
checked off then Merge(G,(q, X>> endif 

else 6 + 6 u b, x, &,,>I 

Ts”(4.X) + -%o(q.x) ” ~K,LA 
Merge(G,(q, Xl) 

endif 
endfor 

endfor 
endprocedure 

4.2. Locally optimal reduction 

Since there can be many C-coverings of a 
given set and the cardinality of C-covering deter- 
mines the number of states associated, we charac- 
terize a C-covering which has the smallest cardi- 
nality as follows: 
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Definition 4.8 (Mnimnl C-corering). Let .Z be a 
C-covering of set .Y. A minimal C-covering of 2 
is a C-covering whose cardinality is less than or 
equal to any other C-covering of _?Z. 

For computing a minimal C-covering of a given 
X we consider the following notions. 

Definition 4.9 (Maximal compatibility block, mcb- 
corxzring 1111). Let R be a compatibility relation 
[ll] on a given set Y’. We say that a subset A of 
9 is a compatibility block (cb) of R on 9 if 
A XA c R. In other words, relation R holds for 
any pair of elements in a compatibility block. A 
maximal compatibility block (mcb) of R on 9 is 
a compatibility block which is not a subset of any 
other compatibility block. The mcb-corering of R 
on 9 is the set of mcbs of R on 9. 

Note that the mcbs need not be mutually dis- 
joint; they define a covering of the given set. Two 
procedures for finding the mcbs of a compatibil- 
ity relation are described in the reference [II]. 

Definition 4.10 (Minimal col!ering dericed from a 
cocering). Let _%? = (K,, . . . , K,,,} be a covering of a 
given set 9. A covering Z’ of 9, is said to be 
deril*ed from 3 iff every element of 3’ is an 
element of 3. The covering Z’ is said to be 
minimal iff the cardinality of 2” is less than or 
equal to that of any other covering derived from 
3. 

According to Definitions 4.8, 4.9, and 4.10 the 
following property holds. 

Property 4.11. Let _Z be a C-cocering of set 9. A 
minimal corering dericed from the mcb-cocering of 
C on 3? is a minimal C-cocering of 3. 

Example 4.12 (Minimal C-cocerings, minimal COL’- 

ering dericed from the mcb-cocering of C on 9). 
Figure 2 shows a graph induced from relation C 
on 9 (= (1, 2, 3, 4, 5, 61). 

(i) Minimal C-covering: ({l, 4, 51, (2, 3, 6)) 
(=X,X 

(ii) The maximal compatibility blocks: (1, 2), 
{3, 4), (1, 4, 5), (2, 3, 6); the mcb-covering of C = 
((1, 4, 51, (1, 21, (3, 41, (2, 3, 6)). 
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Fig. 2. Simplified graph of C on ;” 

(iii) Coverings derived from the mcb-covering 
of C: X1 = ((1, 4, 5), (1, 21, (3, 4). 12, 3, 6)), X3 
= ((1, 4, 5), (3, 4), (2, 3, 6)], .% = ((1, 4, 5), 
(2, 3, 6)), etc.; minimal covering derived from the 
mcb-covering of C: Zj = ((1, 4, 5). (2, 3, 6)) (= 
X4 =_%?I). 

In the above example, if the states are gener- 
ated in the order (1, 2, 3, 4, 5, 61, then the dy- 
namic merging method by Pager [7] might merge 
state 1 and 2 first, and next state 3 and 4. Since 
state 5 is not compatible with any of states re- 
sulted from the previous merging. state 5 is 
stand-alone, as is also state 6. Thus the method 
results in four states, whereas a minimal C-cover- 
ing of the given six states results in hvo states. 

A locally optimal reduction (LOR) of an LR( k) 
parser is a well-defined reduction obtained by 
replacing “Yq + a C-covering of .Zq;,” the third 
step of Procedure Merge in Algorithm 4.7, with 
“Yq + a minimal C-covering of Zq:.” Note that 
for an LALR(k) grammar G, there is only one 
LOR of the LR(k) parser for G and also there is 
only one parsing automaton conformable to the 
reduction, which is just the LALR(k1 parser for 
G. The locally optimal reduction can be consid- 
ered as an approximation to an optimal reduction: 

Definition 4.13 (Optimal reduction of an LR(k) 
parser). A WDR of an LR(k) parser is said to be 
optimal iff the sum of cardinalities of all C-cover- 
ings in the reduction is less than or equal to the 
sum of cardinalities of all C-coverings in any 
other WDR. 

Theorem 4.14. A locally optimal reduction of an 
LR( k) parser is not always an optimal reduction of 
the parser. 

An example is shown in reference [9], which 
demonstrates that a minimal C-covering of a set 
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of states does not always bring the best result in 
the merging of another set of states. 

5. Concluding remarks 

For a given LR(k) parser, we have defined a 
relation which holds for compatible states of the 
parser. By utilizing the relation, we have intro- 
duced a well-defined reduction of the parser, 
presenting a naive algorithm which computes a 
well-defined reduction and an LR(k)-based pars- 
ing automaton conformable to the reduction. We 
have also defined an optimal reduction of the 
parser and have proposed an algorithm for locally 
optimal reduction as an approximation to the 
optimal reduction. It is to be noted that the 
discussed methods can be applied not only to a 
canonical LR(X-) parser but also to any LR(k)- 
style parser obtained by another core-restricted 
technique such as Pager’s weak compatibility 
[7,12]. The future work should include the devel- 
opment of an efficient algorithm for computing 
the locally optimal reduction and an LR(k)-based 
parsing automaton conformable to the reduction. 
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