
Information Processing Letters 47 (19Y3) 245-25 1
Elsevier

8 October 1993

On the reduction of LR(k) parsers *
Woo-Jun Park
Department of Computer Science, Korea Adcanced institute of Science and Technology, 373-1, Kusong-Dong, Yusung-Gu,
Taejon 305-701, South Korea

Myung-Joon Lee
Department of Computer Science, Unicersity of Wan, P.O. Box I8, Wan, Kyung-Nam 680-719, South Korea

Kwang-Moo Choe
Department of Computer Science, Korea Advanced Institute of Science and Technology, 373-1, Kusong-Dong, Yusung-Gu,
Taejon 30.5701, South Korea

Communicated by K. Ikeda

Received 2 July 1992

Revised 25 December 1992 and 8 July 1993

Abstract

Park, W.-J., M.-J. Lee and K.-M. Choe, On the reduction of LR(k) parsers. Information Pocessing Letters 47 (1993)

245-251.

The problem of reducing the number of states in a given LR(k) parser is treated from the standpoint of static merging,
introducing a well-defined reduction of the parser. In addition, a locaNy optimal reduction is presented as a method for

reducing the number of states.

Keywords: Formal languages; LR(k) parsers; reduction of LR(k) parsers; optimization of LR(k) parsers

1. Introduction

Since the invention of LR(k) grammars [5], a
great number of works have been carried out to
construct the parsers for those grammars, trying
to reduce their parsing tables as small as possible.
As a part of such efforts, SLR(k)/LALR(k)
parsing [2,31 gained general acceptance by utiliz-

Correspondence to: W.-J. Park, Department of Computer En-

gineering, Han Nam University, 133 Ojung-dong, Taejon 300-
791, South Korea.

* This paper was supported in part by NON-DIRECTED

RESEARCH FUND, Korea Research Foundation, 1992,

and by Basic Research Fund (ADD-90-4-07), Agency for
Defence Development, South Korea.

ing LR(0) states and appropriate lookahead in-
formation; however, when a given LR(k) gram-
mar fails to be LALR(kG), an equivalent LALR(k)
grammar should be obtained by transforming the
LR(k) grammar. Such a transformation might
require much computation, leading often to a
grammar of somewhat unacceptable size [6].

Pager [7] introduced the notion of compatible
states and proposed a core-restricted method
which merges compatible states with common
cores; in addition, the method merges those states
dynamicalZy, i.e., during the parser construction -
not after constructing the full LR(k) parsing table.
The notion of compatible states, which means the
merging of those states introduces no parsing
conflict, was elegantly revisited by Heilbrunner
with item grammars and parsing automata [4].

0020-0190/93/$06.00 0 1993 - Elsevier Science Publishers B.V. All rights reserved 245

Volume 47. Number 5 INFORMATION PROCESSING LETTERS Y October 1993

In this paper, the notion of compatible states
is tackled again from the standpoint of sratic
merging - the merging of LR(k)states after con-
structing the full LR(k) parsing table. By utilizing
it, we develop a new formalism for merging states
with a common core without causing any conflict,
introducing a new notion well-defined reduction
(WDR) of an LR(k) parser. We define an optimal
reduction which is described using the notion
WDR. We also introduce a locally optimal reduc-
tion of an LR(k) parser which is a useful core-re-
stricted method, as an approximation to an opti-
mal reduction.

The organization of this paper is as follows.
After reviewing the related notation and defini-
tions concerning LR(k) parsers and set theory, a
new relation for merging LR(k) states is given.
Then, a well-defined reduction of an LR(k) parser
and a naive algorithm which computes a well-de-
fined reduction and an LR(k)-based parser asso-
ciated with the reduction, are developed. In addi-
tion, a locally optimal reduction and an optimal
reduction of an LR(k) parser are discussed.

2. Notation and definitions

It is assumed that the reader is familiar with
the notations and conventions of the reference [l]
concerning LR(k) parsers. In particular, the fol-
lowing concepts are used extensively: the relation
=> (rightmost derivation), FIRST,, EFF,,
LRc)-item, lookahead, and the function closure.
In the following, we shall repeat some of Aho
and Ullman’s definitions and a few definitions in
the set theory [ll], sometimes in a modified form.
A context-free grammar (CFG) is a 4-tuple G =
(N, Xc, P, S), where N is a finite set of nontermi-
n&s; 2 is a finite set of terminals such that
N n C = $! ; P is a finite subset of N X V *, where
V (vocabulary) stands for N u 2 and each mem-
ber (A, (Y) of P is called a production, written
A --, CY; and S is the start symbol. For the conve-
nient description of LR(k) parsing, G is assumed
to be augmented in the sense that P contains a
special (start) production S’ -+ S, where S’ does
not occur in any other production. In addition,
we assume that 2 includes a special endmarker,

246

denoted .‘S”. which does not occur in any produc-
tion. An LR(k)-item [A + a . /?, u] is said to be a
kernel item [8], if cr + E or A = S’. If q is a set of
items, we denote:

kernef(q) = {I E q I I is a kernel item},

semikernel(q)=kernef(q)u{A+~IA+~Eq}.

The set of all LR(k)-items with a dotted produc-
tion A -cr./3 in a state is denoted as [A-a.
p, U] where iJ is a set of the lookaheads in those
items. We call such set of items as an item group
of the state.

Definition 2.1 (LR automaton [1,4,6]). The LR(k)
automaton for G is defined by a 5tuple,

where C,, the canonical collection of sets of
LR(k) items for G, is defined recursively by

with qOIk = closure({[S’ + -S, $1)) and

6,(q, X) =cfosure([[A -cYX.~? u]I

[A -+(Y.XP, ul Eq}).

The notation “Q =sf(QY’ means that Q is the
smallest set which satisfies the condition Q =
f(Q). An element of C, is said to be an LR(k)
state for G. The domain of the function 6, is
extended to C, x I/ * or 2’k x V * as follows:

6,(q, E) =4

and 6,(q, XY) =&(&(q, X), Y)

or s,(Qt a) = {&(a a> Iq E Q}.

We denote the LR(0) automaton for G by M,(G)
=(C,, V, So, qozo, $1. A function core is a map-
ping from a set of LR(k)-items to a set of LR(O)-
items, defined by core(q) = ([A ---f (Y .pII[A -+ ct.
p, u] E q}. A (core-restricted) parsing automaton
for G, M(G) = (Q, V, S, qo, @> is said to be
LR(k)-based if every state in Q is a collection of
LR(k) states with a common core; 6: Q X I/+ Q
is a (state transition) function such that core(d(q.
X)) = G,(core(q), X), q E Q, where the domain
of function core is extended to 2O by core(q) =

Volume 47, Number 5 INFORhtATION PROCESSING LETTERS 8 October 1993

(I E core(q)\ 4 E q}; qO, the initial state of M, is
(qozk}. Obviously, M(G) has the correct prefix
property.

Definition 2.2 [ll] (Partition and cocering of a

set). Let .Y be a given set and Q = (T,, T2,. . . , T,}
where each T,, i = 1,. . . , m, is a subset of 9 and
lJ ;l ,q =Y. Then the set Q is called a col.ering
of 9, and the sets T,, T,,. . . , T, are said to
col’er 9. If, in addition, the elements of Q, which
are subsets of 9, are mutually disjoint, then Q is
called a partition of 9, and the sets T,, T,, . . . , T,,,
are called Hocks of the partition.

Definition 2.3 (Core-equicalence partition). The
core-equivalence partition of C’, in M,(G) is a
partition (Bq,, Bq,, . . , Bq,,-,) where B,, (qi E
C,) is the set of states in C, which have a
common core qi (i.e. B,, = {p I core(p) = qi, p E
C,}). Each BGz is said to be a core block associ-
ated with LR(O)-state qi of the partition.

3. Compatible LR(k) states

To reduce the size of a given LR(k) parser, a
group of LR(k) states in a core block can be
merged into one; but, in general, the merging of
those states might cause parsing conflicts. If the
merging of LR(k) states p and q causes no
parsing conflict, then the states p and q are said
to be compatible. In this section, we define a new
relation for finding those compatible LR(k)
states. Throughout this section, X is a symbol in
V and S is the function 6, in Definition 2.1.

We begin by introducing a new relation C,
which holds for sets of LR(k) items such that the
union of those sets does not exhibit any parsing
conflict in the resulting set.

Definition 3.1 (Temporarily compatible). Let p
and q be sets of LR(k) = items. Then, p C, q iff
core(p) = core(q) and for every pair of item
groups such that [A+cu.p, U], [B-+y., W]E
p, [A+cu.p, U’l, [B+y., W’lcq, where A
-*cr.p#B-+y*, IVnEFF,(/3U’)=@ and W’
n EFF,(PlJ) = $.

Obviously, if p C, q, neither shift-reduce nor
reduce-reduce parsing conflict occurs in p U q.
Using relation C,, relation compatible is defined
recursively:

Definition 3.2 (Compatible). ’ Let p and q be
LR(k) states. Then,

pCq iff

p c, 4 A (VX) q P, Xl c qrl. X)7

where XE {Xl6(p, X) fp or 6(q, X) +q}.

Let p and q be sets of LR(k) states. The domain
of relation compatible can be extended to a set
of LR(k) states as the following. p C q iff for all

(P, 4) EP x 49 P c 4.

In other words, two LR(k) states are compati-
ble iff those states are temporarily compatible and
all of their successor states transited by the same
symbol are compatible.

Property 3.3 (i) C and C, are compatibility rela-

tions [ll], which are reflexice and s)‘mmetric.

(ii) Let p, q E C, and (Y E V *. If p C q, then

Wcr) 6(p* (Y) c 6(q, (u).

Relation C, on sets of LR(k) states can be
computed by examining only their semikernels as
is shown below.

Theorem 3.4. Let p and q be LR(k) states. Then,

p C, q iff semikernel C, semikernel(

The proof of the theorem is described in refer-
ence [9].

Instead of computing relation C directly, we
compute the complement of the relation since
Tarski’s fixed-point theorem [lo] can be easily
applied to the computation of the complement.
Reference [9] provides an algorithm which com-
putes the complement of C on C, using the
theorem.

’ So far as dynamic merging is concerned. one might refer to
the non-recursive relations in the case of k = 1, introduced

by Pager [7] and by Heilbrunner [J].

217

Volume 47, Number 5 INFORMATION PROCESSING LETTERS 8 October 1993

4. Reduction of LR(k) parsers

4.1. Well-defined reductions

Given the LR(k) parser for a CFG G, as was
discussed in the previous section, compatible
LR(k1 states in a core block of the parser can be
merged into a single state without causing any
conflict. At the first sight, the problem of decid-
ing which compatible states in the block might be
merged for constructing an LR(k)-based parser
for G, appears to be the problem of finding a
partition of the block. However, it is the problem
of finding a covering of the block as the following
example shows.

Example 4.1 (Needs for col;erings). In Fig. 1,
assume that the pairs (1, 2) and (3, 4) are in
relation C on a core block associated with 4 E C,.
If the two states of each pair are merged to-
gether, then the X-successors of merged states
(i.e. 6({1, 2}, X) and S((3, 4}, X)) should include
(11, 12) and (12, 141, respectively. Note that state
12 has to be included in both of the successors.
Thus ((11,12), (12,14)) is a covering of {11,12,141.

For describing the reduction of LR(k) parsers,
a fundamental definition is given:

Definition 4.2 (Reduction of an LR(k) parser).
Let (n,, II,, . . . , Il,J be the core-equivalence par-
tition of an LR(k) parser, and & be a covering
of fli for 1 Q i Q n. Then the collection

W,, x*9..., Zn} is said to be a reduction of the
LR(k) parser.

To be free of any parsing conflict when those
states in an element of 4 (in Definition 4.2)

4 E co

form a new state in an LR(k)-based parser, re-
ductions should be intro-consistent :

Definition 4.3 (Zntra-consistent reduction). Let Q
be a set of LR(k) states with a common core. A
C-coceting of set 9 is a covering of .Y such that
relation C holds for any pair in a member of the
covering. A reduction (Z,, Zz,. . . , Xn} of an
LR(k) parser is intru-consistent iff each .F (1 < i
< n) is a C-covering of the associated core block.

In addition, the relationship between the cov-
erings of the core blocks should be considered so
that the language accepted by the aimed LR(k)-
based parser might not differ from that of the
original LR(k) parser, as is captured by the fol-
lowing definition.

Definition 4.4 (Goto-consistent reduction >. Let X
E V, and 4 and q. be coverings of the core
blocks of an LR(k) parser. Then &. is goto-con-
sistent with Xj iff for each K E&, Xj contains an
element including ak(~, X) whenever 4 is a
covering of the core block with core pO and Zj is
a covering of the core block with dO(pO, X). A
reduction (Zi, x2,. . . , Zn} is said to be goto-
consistent iff 4 is goto-consistent with Xj for all
i, j (1 < i, j Q n).

The above discussion leads to a new notion
well-defined reduction from which an LR(k)-based
parser can be naturally obtained.

Definition 4.5 (Well-defined reduction (WDR) of
an LR(k) parser). A reduction {xi, Z1,. . . , 3,)
of an LR(k) parser is said to be well-defined
when it is intra-consistent and goto-consistent.

6”@v~ co

&(l, X) = II, &(2> x> = 12, &(3, X) = 12. &(4, x) = 14

Fig. 1. State transitions and relations on two core blocks.

248

Volume 47. Number 5 INFORMXTION PROCESSING LETTERS 8 October 1993

Definition 4.6 (LR(k)-based parser conformable to
a WDR). An LR(k)-based automaton M(G) =
<Q, V, 6, qO, @> is conformable to a WDR
ix,, x2,. . . , Zn] of M,(G) = CC,, I’, 6,, qO,k, ti)
if it satisfies the following conditions:

(i)Q=(&cE&, l<i<n),
(ii) q. = 140:k1, and

(iii) 8(~, X) is defined if some Zj (1 <j d n>
contains an element which includes ak(~, Xl.

Basically, an LR(k)-based parsing automaton
M(G) conformable to a KDR of M,(G) has the
correct prefix property from Definition 2.1. Ac-
cording to Definition 4.3, no state of M(G) ex-
hibits any parsing conflict. Further, Definition 4.4
says that if S * &YX, 4 = ak(qO:k, Y) and 4 =
Hq,, y>, then q is contained in q. Hence, the
parsing actions for a given string to be performed
by M(G) are equivalent to the parsing actions for
the string by M,(G).

For a given LR(k) parser, a naive algorithm
for computing a WDR of the parser and a parsing
automaton conformable to the WDR is presented
in the following. In this algorithm, if T is a
collection of sets of LR(k) states, the union of all
the elements of T is denoted as uncocer(T). For
example, if ((1, 21, 12, 3]} is a new LR(k)-based
state, then the state can be identified by (1, 2, 3)
(= rtncouer(111, 2], 12, 3)))) since an LR(k)-based
state is characterized by the LR(k) states which
constitute the state according to Definition 2.1. A

running example for the algorithm is given in
reference [9].

Algorithm 4.7 (Computation of a WDR of an
LR(k) parser and an LR(k)-based parsing au-
tomaton conformable to the WDR).

Input: M,(G) = CC,, V, a,, qOIk, (d), M&G) =
(Cl), v, 60, qo:o, $1,
R / * the relation matrix of C on C, */

Output: Ix’, 1 q E Co1 / * a WDR of M,(G) */,
M(G) = (Q, V, 6, qo, @I / * an LR(k)-based
parsing automaton conformable to the
WDR */

Method:
1. Q+@; 6+-g;

2.foreachq~C~doZ~+({p~Ip~C~,core(p)
= q} / * initially, no Zq is checked off
*/ endfor;

3. Merge (qozo). / * merging states */

procedure Merge(q) / * q E Co */

Q + Q -zq;
compute the relation C on Zq using R;
7, + a C-covering of Z$
Zq + (uncor.er(7) I 7 E S,);
Q+QuXq;
check off Zg;

/* modify the transitions from predecessors, and
delete obsolete transitions */

for each r E Yq do
for each r E Tdo

for each p such that 3E E V with 6(p, E)
= r do / * E is the entry symbol of state

rl */
S + S - ((p, E, r>l; S + 6 u ((p, E, un-
cocer(T>>}; / * uncoUer(7): a new
state */

endfor
for each s such that AXE V with 6(r, X>
= s do S +- 6 - ((r, X, s)) endfor

endfor
endfor;
/ * add or modify transitions to successors “/
for each XE V such that 6,(q, Xl is defined do

for each K EXq do
K _cucc + ~,(Z Xl;

if K succ C K’ for some K’ EXdoc4~Xj then
6 + 6 U {(K, X, ~‘1); if ~&~4,x~ is not
checked off then Merge(G,(q, X>> endif

else 6 + 6 u b, x, &,,>I

Ts”(4.X) + -%o(q.x) ” ~K,LA
Merge(G,(q, Xl)

endif
endfor

endfor
endprocedure

4.2. Locally optimal reduction

Since there can be many C-coverings of a
given set and the cardinality of C-covering deter-
mines the number of states associated, we charac-
terize a C-covering which has the smallest cardi-
nality as follows:

249

Volume 17. Number 5 INFORMATION PROCESSING LETTERS Y October 1993

Definition 4.8 (Mnimnl C-corering). Let .Z be a
C-covering of set .Y. A minimal C-covering of 2
is a C-covering whose cardinality is less than or
equal to any other C-covering of _?Z.

For computing a minimal C-covering of a given
X we consider the following notions.

Definition 4.9 (Maximal compatibility block, mcb-
corxzring 1111). Let R be a compatibility relation
[ll] on a given set Y’. We say that a subset A of
9 is a compatibility block (cb) of R on 9 if
A XA c R. In other words, relation R holds for
any pair of elements in a compatibility block. A
maximal compatibility block (mcb) of R on 9 is
a compatibility block which is not a subset of any
other compatibility block. The mcb-corering of R
on 9 is the set of mcbs of R on 9.

Note that the mcbs need not be mutually dis-
joint; they define a covering of the given set. Two
procedures for finding the mcbs of a compatibil-
ity relation are described in the reference [II].

Definition 4.10 (Minimal col!ering dericed from a
cocering). Let _%? = (K,, . . . , K,,,} be a covering of a
given set 9. A covering Z’ of 9, is said to be
deril*ed from 3 iff every element of 3’ is an
element of 3. The covering Z’ is said to be
minimal iff the cardinality of 2” is less than or
equal to that of any other covering derived from
3.

According to Definitions 4.8, 4.9, and 4.10 the
following property holds.

Property 4.11. Let _Z be a C-cocering of set 9. A
minimal corering dericed from the mcb-cocering of
C on 3? is a minimal C-cocering of 3.

Example 4.12 (Minimal C-cocerings, minimal COL’-

ering dericed from the mcb-cocering of C on 9).
Figure 2 shows a graph induced from relation C
on 9 (= (1, 2, 3, 4, 5, 61).

(i) Minimal C-covering: ({l, 4, 51, (2, 3, 6))
(=X,X

(ii) The maximal compatibility blocks: (1, 2),
{3, 4), (1, 4, 5), (2, 3, 6); the mcb-covering of C =
((1, 4, 51, (1, 21, (3, 41, (2, 3, 6)).

250

Fig. 2. Simplified graph of C on ;”

(iii) Coverings derived from the mcb-covering
of C: X1 = ((1, 4, 5), (1, 21, (3, 4). 12, 3, 6)), X3
= ((1, 4, 5), (3, 4), (2, 3, 6)], .% = ((1, 4, 5),
(2, 3, 6)), etc.; minimal covering derived from the
mcb-covering of C: Zj = ((1, 4, 5). (2, 3, 6)) (=
X4 =_%?I).

In the above example, if the states are gener-
ated in the order (1, 2, 3, 4, 5, 61, then the dy-
namic merging method by Pager [7] might merge
state 1 and 2 first, and next state 3 and 4. Since
state 5 is not compatible with any of states re-
sulted from the previous merging. state 5 is
stand-alone, as is also state 6. Thus the method
results in four states, whereas a minimal C-cover-
ing of the given six states results in hvo states.

A locally optimal reduction (LOR) of an LR(k)
parser is a well-defined reduction obtained by
replacing “Yq + a C-covering of .Zq;,” the third
step of Procedure Merge in Algorithm 4.7, with
“Yq + a minimal C-covering of Zq:.” Note that
for an LALR(k) grammar G, there is only one
LOR of the LR(k) parser for G and also there is
only one parsing automaton conformable to the
reduction, which is just the LALR(k1 parser for
G. The locally optimal reduction can be consid-
ered as an approximation to an optimal reduction:

Definition 4.13 (Optimal reduction of an LR(k)
parser). A WDR of an LR(k) parser is said to be
optimal iff the sum of cardinalities of all C-cover-
ings in the reduction is less than or equal to the
sum of cardinalities of all C-coverings in any
other WDR.

Theorem 4.14. A locally optimal reduction of an
LR(k) parser is not always an optimal reduction of
the parser.

An example is shown in reference [9], which
demonstrates that a minimal C-covering of a set

Volume 17. Number 5 INFOR,MATION PROCESSING LETTERS Y October lYY3

of states does not always bring the best result in
the merging of another set of states.

5. Concluding remarks

For a given LR(k) parser, we have defined a
relation which holds for compatible states of the
parser. By utilizing the relation, we have intro-
duced a well-defined reduction of the parser,
presenting a naive algorithm which computes a
well-defined reduction and an LR(k)-based pars-
ing automaton conformable to the reduction. We
have also defined an optimal reduction of the
parser and have proposed an algorithm for locally
optimal reduction as an approximation to the
optimal reduction. It is to be noted that the
discussed methods can be applied not only to a
canonical LR(X-) parser but also to any LR(k)-
style parser obtained by another core-restricted
technique such as Pager’s weak compatibility
[7,12]. The future work should include the devel-
opment of an efficient algorithm for computing
the locally optimal reduction and an LR(k)-based
parsing automaton conformable to the reduction.

Acknowledgment

References

[I] A.V. Aho and J.D. Ullman. The Theoq of Pursing. Trdnr-
lution and Compding, Vols. I and Z (Prentice-Hall, Engle-

wood Cliffs, NJ. 1972 and 1973).

[2] F.L. DeRemer. Practical translators for LR(P) lan-

guages, Thesis, Massachusetts Institute of Technology.

Cambridge. IMA. 1969.

[3] F.L. DeRemer. Simple LR(k) grammars. Comm. .-IC.LI

11 (1971) 453-460.

[4] S. Heilbrunner, A parsing automata approach to LR

theory. Theoret. Comput. Sci. 15 (1981) 117-157.

[5] D.E. Knuth. On the translation of languages from left to

right, Inform. and Conwol 8 (1965) 607-639.

[6] M.J. Lee and K.M. Choe. SLR(k) covering for LR(k)

I71

@I

[91

1101

1111

[121

grammars, Inform. Process. Lett. 37 (199 I) 337-347.

D. Pager. A practical general method for constructing

LR(X-) parsers. Acta Inform. 7 (1977) 249-168.
J.C.H. Park, K.M. Choe and C.H. Chang. A new analysis

of LALR formalisms, ACM Trans. Programming Lan-
guage Systems 7 (1985) 159-175.

W.J. Park, M.J. Lee and K.M. Choe. On the Reduction

of LR(/o Parsers. Tech. Rept. No. CS-TR-92-70. Dept.

of Computer Science, KAIST. 1992.

A. Tarski. A lattice theoretical fixed-point theorem and

its applications. Pucific J. Murh. 5 (1955) 285-309.
J.P. Tremblay and R. Manohar. Discrere ,Wurhemarical
Structures with Applications to Compurer Science, (!.lc-
Craw-Hill, New York, 1975).

C. Wetherell and A. Shannon, LR - automatic parser

generator and LR(I) parser, IEEE Trans. Software Engi-
neering 7 (19s 1) 174-278.

The authors wish to thank the referees for
their helpful comments and suggestions.

‘51 __

