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Abstract 

Yun, I.-S., K.-M. Choe and T. Han, Syntactic error repair using repair patterns, Information Processing Letters 47 (1993) 

189-196. 

A syntactic error repair model is proposed, and is defined as a partial function from strings to sentences. The replacement 

of a substring of a string with a substring of a sentence is described by a repair pattern, which is roughly a pair of strings of 

grammar symbols. The model can be efficient with some restriction on repair patterns. An LR-based implementation of the 

model is discussed. 
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1. Introduction 

Syntactic ereror recovery and repair schemes 
have been an important aspect of compiler de- 
sign, and accordingly have received a great deal 
of attention in the literature (see, e.g., the bibli- 
ography by van den Bosch [101X 

Error repair schemes try to transform the erro- 
neous substrings of a string into “similar” but 
syntactically correct substrings. In a more formal 
setting, if a strong uav is not in a language L 
such that u is a prefix of a sentence in L but uxa 
is not, then the schemes may attempt to find a 
pair of strings (x, y) such that uya is a prefix of a 
sentence in L, and repeat this process for uyav. 
We may consider finding such a pair of strings 
(x, y) as a main problem in local error repair. 
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Usually, the pair (x, y) is found by some algo- 
rithm based on syntactic structures of grammars 
[1,4,51. 

We present a method for describing such pairs 
(x, y). The pairs (x, y) are described by a repair 
pattern, which is roughly a pair (a, p) of two 
strings of grammar symbols such that (Y a* x and 

P-* y with some restriction on p and y. The 
pair (a, p) is denoted by LY * /?. We also propose 
an error repair model as a function using the 
repair pattern. 

The following section describes the necessity 
for the repair pattern and reviews terminology 
and notations used. Section 3 contains a rationale 
of repair patterns and our error repair model. In 
Section 4, we formally define the repair pattern, 
and present an error repair model as a function. 
We also give theorems concerning some proper- 
ties of the model and helping write repair pat- 
terns. Section 5 contains examples of repair pat- 
terns which can describe ,some kinds of errors 
that are difficult to repair in other schemes. This 
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demonstrates description ability of repair pat- 
terns. In Section 6, an algorithm for construction 
of an LALR parsing table with error entries is 
given, and an LR driver program for our model is 
discussed. The final section gives a conclusion. 
All proofs of theorems and lemmas in this paper 
are given in [ 111. 

2. Motivation and terminology 

Virtually all error repair schemes can have a 
poor repair for a substring x of a certain input 
string. If y is the most plausible repair for x, 
repair pattern x *y requests the error repair 
scheme which supports repair pattern to handle 
this case. The model can transform a poor repair 
into a good one when a repair pattern is given for 
such poor case. 

Since users of parser generators [3] may want 
trade-off between quality of repair and compile 
time, it is desirable that parser generators have 
switches for controlling quality of repair. Most 
parser generators produce error handlers which 
adopt an error scheme without such switches. In 
our scheme, because repair patterns are given as 
input to a parser generator, we can control the 
balance between efficiency and quality of repair. 

Even the minimum distance repair [2] is not 
always the “most plausible” repair. Consider, for 
example, a Pascal fragment “if 1 < = i < = 7 then 
. . . “. A minimum distance repair seems “if 1 < = 

i + 7 then . . . “, but the most pIausible repair is 
quite likely to be “if (1 < = i) and (i < = 7) then 
. . . “. Without mathematical knowledge that 1 G i 
6 7 denotes 1 G i and i < 7, the repair cannot be 
obtained. The knowledge cannot be derived from 
the grammar, either. It, however, can be de- 
scribed by the repair pattern “E, < = id < = E, 
=+ (E, < = id) and (id < = E,)“, where the sub- 
scripts in E, and E, distinguish two instances of 
E, which is a nonterminal for expression. A for- 
mal model based on only syntactic structure gen- 
erated by a grammar does not know human er- 
rors. 

In this paper we use the basic notions of 
grammars and parsing in [3]. A (context-free) 
grammar G is a quadruple (N, 2, P, S>, where 
N, C and P are finite sets of nonterminals, termi- 
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nals and productions, respectively, and S EN is 
the start symbol. A symbol in N U 2 is called a 
grammar symbol. We will use the following nota- 
tional conventions. A, B and S denote nontermi- 
nals; X and Y denote grammar symbols; a, b and 
c denote terminals; u, L’, w, x, y and z denote 
strings of terminals; and LY, p, y, 6 and 17 denote 
strings of grammar symbols. A symbol X is said 
to be useful if either X = S or S d* LYXP d* w 
for some (Y, p and w. Otherwise X is useless. A 
grammar is said to be reduced if it contains no 
useless symbols. If L is a language and uu E L, 
then u is called a prefix of L. L(y) denotes 

(w I y -* WI. 

3. Rationale 

This section deals with the rationale of the 
repair pattern and our error repair model. Let us 
start with a motivating example. A common error 
in if statement of Pascal is to put in an extrane- 
ous semicolon at the end of a statement between 
then and else [3&l. To repair the error, the semi- 
colon is to be deleted under “the context”. We 
may express this type of error and its repair as 

“if expr then stmt, ; else stmt, 

- if expr then stmt, else stmt,“, 

which is a repair pattern. The left and right part 
of 3 are called the pattern part and replacement 
part, respectively. Here, if, then, else and “;” are 
terminals; and expr and stmt (stmt, and stmt, 
are two distinguished stmt ‘s> are nonterminals. 
An instance of this type error is “if i > j then 
max := i ; else max := j”, and its repair is “if i > j 
then mux := i else max := j”. 

Usually, as in the example, some terminals in 
repair patterns represent actual repairs, and the 
other terminals and all nonterminals represent a 
context. The pattern part can be any string of 
grammar symbols, but the replacement part can- 
not have new nonterminals which do not appear 
in the pattern part, since no context can be made. 

When “if expr then stmt, ; else stmt,” de- 
rived “if i > j then mux := i ; else max := j”, non- 
terminals exp, stmtl and stmt, derive “i > j”, 
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“max := i” and “max := j”, respectively. Such 
strings of terminals are obtained by function yield. 

Under the context that the replacement part is 
aliowed but its pattern part is not, if a portion of 
the input matches a string derived from the pat- 
tern part during parsing the input, then it is 
replaced with its repair, which is the replacement 
part with its nonterminals replaced by their 
yield’s For example, the nonterminals exp, stmt, 
and stmt, are replaced with “i > j”, “max := i” 
and “max := j”, respectively. This is a rationale of 

the definition of function repair. 
When a portion of the input matches to sev- 

eral pattern parts of repair patterns simultane- 
ously, a repair pattern is chosen by comparing 
with “cost”. For this purpose, the cost part of a 
repair patterns is introduced. If two or more 
portions of the input which begin at the same 
position match pattern parts of repair patterns, 
then it is reasonable to choose repair patterns 
corresponding to the shortest portion for imple- 
mentation efficiency. Hence we define LCR, this 
way. In case several portions of the input match 
pattern parts of repair patterns, the repair pat- 
tern corresponding to the leftmost portion is cho- 
sen. The reason is that most parsers scan the 
input from left to right. This reflects the defini- 
tion of repairer,. 

4. Repair pattern and error repair model 

This section deals with the relevant definitions 

of the repair pattern and our error repair model. 
There is a string cy of grammar symbols of an 
unambiguous grammar such that some string in 
L(a) can have several rightmost derivations from 
CY. For example, consider an unambiguous gram- 
mar for expressions from [3]: 

(IE, T, F), {+, *, (,>, Id}, 

{E-,E+T, E -+T,T+T* F,T+F, 

F+(E), F+id], E). 

Then the string id * id * id has two rightmost 
derivations from the string E * T. A string CY of 
grammar symbols is said to be ambiguous if some 
strong in L(cr) has two or more rightmost deriva- 

tions from CY. Otherwise, (Y is unambiguous. For 
string p of grammar symbols, NP is defined to 
denote the set of all nonterminals which appear 
in p on the assumption that each symbol in p is 
distinguished. 

Definition 4.1 (Repair pattern). Let (Y be an 
unambiguous string of a grammar G, p be a 
string in (2 u N,)*, and c be a nonnegative inte- 
ger. Then (a, p, cl is called a repairpaftem of G, 
and denoted by (Y * p(c) or by (Y *p if c is 
irrelevant. a, /3 and c are called the pattern part, 
replacement part and cost part, respectively. 

When a string a derives a string x, yield,(A, 
x) is defined to be x’s substring derived from A. 
The first component of its domain is extended to 
strings naturally. The restriction that (Y is an 
unambiguous string makes yield, a function. 

Definition 4.2 (Function yield,). Let (Y = 
x,x,. . . X,, be an unambiguous string of a gram- 
mar G = (N, 2, P, S). The function yield, from 
IV, x L(a) to J$* is defined by yield,(A, x) =xi 
if A =X,, where X, j* xi for all 1 <j < n with 
x =x1x2.. . x,. The domain of yield, is extend to 
(2 U NJ* XL(a) as follows: 

yield,(s, x) = E, 

yield,( a, x) = a for all a in C, and 

yield,( Xp, x) = yield,( X, x) yield,( p, x) . 

The function repair(u, U, (Y 2 p> is defined to 
be the set of all triples (x, y, (Y *p) such that 
x E L(a) is a prefix of u, y is yield,(p, x), there 
is an error in x or at the symbol following x, and 
the error is repaired by the replacement of x 
with y. 

Definition 4.3 (Function repair). Let R be a finite 
set of repair patterns of a grammar G = 
(N, 2, P, S). The function repair from x * X Z* 
x R to 2P*x’*xR is defined by 

repair(u, U, r) 

= {(x, y, r) Ir=cy * p, x is the longest 
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prefix of u with (YJ* x, y =yield,(P, x), 

u =xau’, uxa is not a prefix of L(G), 

and S ** ypS d* uyaz for some 2, 6, 

and y d* u}. 

The phrase “the longest prefix of u” in above 
definition is used, since several prefixes of u can 
be derived from (Y. For example, prefixes id and 
id + id of a string id + id are derived from non- 
terminal E of the grammar for expressions. 

Theorem 4.4. Let a - p be a repair pattern of a 
grammar G. Zf (x, y) E repair(u, c, CY - /?) then 
u is a prefix of L(G), x is a prefix of L’, and there 
exists an error in uxa and not in uya, where v = xav I. 

Any input string can be edited to a syntacti- 
cally correct string by a sequence of primitive edit 
operations of inserting or deleting of a symbol, or 
replacing one symbol with another [1,2]. The re- 
pair patterns are used to describe the primitive 
edit operations, and may be classified according 
to them. We define that the repair patterns (YP 
2 aYP, cuXp 3 ap, and cuZp a czW/? are for an 
insertion of Y, for a deletion of X, and for a 
replacement of Z with W, respectively. We extend 
the definitions to two or more symbols, for exam- 
ple, a/3 * aXY@ is a repair pattern for insertions 
of X and Y. 

The following theorem shows a limitation of 
the model, and implies that if any input should be 
repaired then some other repair scheme must be 
incorporated into the model in case all repair 
patterns fail. 

Theorem 4.5. For some grammar G, there is an 
error that cannot be described by any repair pattern 
in any finite set of repair patterns of G. 

The function LCR,(u, U) for a set R of repair 
patterns is defined to be the set of all triples in 
U TE R repaidu, u, r) whose cost are the lowest. 
Note that the shorter the first component of a 
triple is, the lower its cost is. 
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Definition 4.6. (Function LCR,, least-cost repair). 
Let R be a finite set of repair patterns of a 
grammar G = (N, -C, P, S). The function LCR, 
from s* XC” to 2z*X’*XR is defined by 

LCR,(u, U) = {(x, Y, r) ~AIcost(x, Y, r) 

< cost( x’, y’, r’) for all 

(x’, Y’, r’) EA}, 

where A = lJrER repairb, u, r>, w = max(c 1(x, 
y, (Y *p(c)) EA) + 1, and cost(x, y, r) = I x I x 

w + the cost part of r. 

We are ready to present our error repair model 
as a function. First, let us imagine the syntactic 
error repair process performed by human beings. 
Suppose that there are a program with many 
syntactic errors and a compiler halting after the 
first detection of a syntactic error. One compiles 
the program with the compiler. When the com- 
piler detects the first syntactic error, scanning 
left-to-right, it halts with an error message. Then 
one finds what is the error by the aid of the 
message, and repair the error in the program. 
One repeat this process for the repaired program 
until no syntactic errors are found by the com- 
piler. 

For a given set R of repair patterns, the func- 
tion repairer, is recursively applied to the repair 
of the first syntactic error, if any. This is our error 
repair model. In the following, k denotes the 
point of the first error and LCR,(a,. . . ai, 
a,+1... a,> f fl implies that there is an error in 
~~+,a~+~. . . a,. 

Definition 4.7 (Function repairer,). Let R be a 
set of repair patterns of a grammar G = 
(N, 2, P, S). The function repairer, from J?* to 
x* is defined by 

repairerR(ala,. a,) 

= 

I 

a,a,...an 

if LCR,(a ,... a,, a,+,...a,)=ti 

for all 0 < i < n, 
repairer~(alaz...akYak+lxl+lak+,xl+z... n a> 

otherwise, 

where k = minli 1 LCR,(a, . . . ai, Ui+ 1.. . a,> # @I 
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and choose a (x, y, r> from LCR(Ja,. . . uk, Example 5.2. if A = 1 then write(l) ,, ; f else 

‘k+t... a,) deterministically. w&e(2); 

Theorem 4.8. For any finite set R of repair pat- 
terns, the function repairer, is computable. 

We discuss how to write a repair pattern. Its 
pattern part is an unambiguous string, and its 
replacement part is a substring of a sentential 
form (otherwise, it is useless). For these, a few 
sufficient conditions are given below. 

The semicolon preceding the else is illegal and 
the obvious repair is to delete it. This is quite a 
difficult repair to realize because “if A = 1 then 
write(l)” reduces to a nonterminal before the 
error is detected [1,4,6]. A repair pattern “if expr 
then stmt; else * if expr then stmt else” for 
deletion of “;” describes the error. 

Example 5.3. . . . ; ,, A t = B then write(l) else 
write(2); . . . 

Theorem 4.9. Let (Y and /3 be two unambiguous 
strings. Then so is ap if (y I xy E L(o)) and {x I xy 
E L(p)} are disjoint. 

Theorem 4.10. A substring of a sentential form of 
an unambiguous reduced grammar is unambigu- 
ous. 

An if is missed and obvious repair is to insert 
it at preceding A. Many error repairs have a 
great deal of difficulty with missing statement 
headers [7]. A repair pattern “expr then * if expr 
then” for insertion of if describes the error. 

Example 5.4. a := b ,, t c . . . 

Theorem 4.11. Let G be a reduced grammar, and 
let y be a substring of a string derived from any 
grammar symbols of G. Then y is a substring of a 
sentential form. 

5. Examples of the repair patterns 

The repair pattern may be used when the 
incorporated model has a poor repair for some 
error, and when we wish to guarantee correct 
treatment of rather common error. The following 
examples describe some kind of errors that are 
difficult to repair in other schemes with erro- 
neous Pascal fragments. This demonstrates de- 
scription ability of the repair patterns. The point 
of detection is indicated by “ t” and that of 
actual error guessed is indicated by “ fl”. 

A symbol is missed between b and c. Three of 
many possible repairs are “u := b + c . . . “, “u := 
6; c . ..” and “a := b [c . . . “. With additional 
input symbols which distinguish the current situa- 
tion from the other possibilities, “a := b c + . . . “, 
“a := b c := . . . “, and “u := b c] . . . “, more plau- 
sible repair, in each case can be chosen [l]. The 
three possible repairs are described by repair 
patterns “id := expr expr + * id := expr + expr 
+ “) “id := expr id := =a id := expr; id := “, and 

“id := exprlist] * id := [exprlist]” for insertion of 
“ + >9, ‘,;,9, or “[U. 

Example 5.5. if ,, a =b or c T d then... 
An obvious repair is “if (a = b) or (c = d) then 

Example 5.1. ,, p rocedure factorial ( x : integer ; 
var fact: integer >: t integer; 

. . . “. Most repair schemes may not be entirely 
satisfactory because they give no insight into why 
the error was made. That is, expressions such as 
“ . . . a=b or c=d . ..” look correct and indeed 
are correct in many languages 171. This kind of 
errors can be described by a repair pattern 

The procedure is used where a function seems 
to be intended. The difficulty of repair for this 
type is pointed out in [4]. A repair pattern “pro- 
cedure id (formalpanns): typeid * function id 
(formalparms): typeid” for replacement of proce- 
dure with function describes the error. 

“sexpr, relop term, or sexpr, relop term, 

j (sexpr, relop term 1) or (sexpr, relop term,) ” 

for insertions of “C’, “I”, “(” and “I”, where the 
sexpr stands for the simple expression, and relop 
denotes the relational operators = , < > , < , 
>, <= or >=. 
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6. Discussion on LR-based implementation 

This section discusses the possibility of an im- 
plementation of our error repair model with re- 
pair patterns (Y =. p whose replacement part is a 
substring of a right-sentential form. Intuitively, 
we extend the LR-based parser to be able to 
parse (Y at states which “predict” p. When (Y is 
parsed successfully instead of p at one of the 
states, (Y in the parser stack is popped and p is 
parsed with the extended parser. 

The domain of the function goto [3] is ex- 
tended to strings: goto(Z,, E) = I, and goto(I,, 
Xa) =goto(goto(I,, X), a), where Z, is a set of 
items. A definition of an efficient computation 
method for LALR( k) lookahead set LA, can be 
found in [9]. The following theorem shows how to 
find the states which predict /3. 

Theorem 6.1. Let p be a substring of a right- 
sentential form of an augmented grammar G’ = 
(N’, 2, P’, S’), and let I, be a set of items in the 
collection of sets of LALR(1) items for G’. Let p’ 
be the longest prefix of p such that goto(I,, p’) = 
I,#@, and let p=p’y. If either /3=/3’ or ye 
ol,,,(Z,,[A-+6*]) forsomeproductionA+6, 
then there is y such that goto(Z,, y) = I, and y/3w 
for some w is a right-sentential form. 

Step 2 of Algorithm 6.2, for each repair pat- 
tern (Y * /3, introduces item [p + -(Y, al at states 
which predict p, where p in the item is treated as 
a new nonterminal. In step 3, sets of pairs of 
items are found. The function closure for LR(1) 
is found in [3]. Step 4 renames pairs of items. The 
last step constructs the parsing table, which has 
an additional type of move, repair E. The con- 
flicts between ordinary item and “error” item are 
resolved in favor of the former. This cannot re- 

solve all conflicts, even though a given grammar 
G is LALR(1). 

Algorithm 6.2. Constructing an LALR parsing 
table with error repair entries. 

Input. An augmented grammar G’ = (N’, 2, P’, 
S’) and a finite set R of repair patterns whose 
replacement part are a substring of some 
right-sentential form. 
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Output. An LALR parsing table with error repair 
entries. 

Method. 

4. 
5. 

Construct C = {Z,, I,, . . . , I,,}, the collection of 
sets of LALR(1) items for G’. 
For each Z, in C, find 1, = ([p + *(Y, al I a * 
p in R, /3’ is the longest prefix of /? such that 
goto(Z,, p’) =I, # @, either p = p’ or 77 E 
LA,,,(Z,, [A+S-1) for some A+6 in P’ 
with /I = @‘n). 
Find the smallest set D such that D = 
{(Z,, .I,)] u {(I, K) I(I,, KJ ED, X is a gram- 
mar symbol, I = goto(Z,, X), 

K=cZosure({[p +aX-y, all 

[P-o-XY, ul q} u-J&J 

and (I, K)#(@, fl). 
Let D = (L,, L1,..., L,] with L, = (I,,, I,). 
State i of the parser is constructed from Li = 
(I,, Kq). The tables action and goto for state 
i are determined as follows: 
(a) If [A + u - a/3, b] is in Z, U K, and 

goto(L;, a) = L;, then set action[i, al to 

(b) 

cc> 

Cd) 

, 
“shift j”. 
If [A+a*, a] is in Z, u K, with A in 
N’ - (S’}, then set action[i, a] to “reduce 
A + CY”. 
If E # (d, [A -+ y * ~6, b] is not in I, and 

[A-+6*, a] is not in I,, then set 
action[i, a] to “repair E”, where E = (cu 
*pI[p+(Y’, alq$ 
If [s’ + S * , $1 is in Z,, then set action[i, a] 
to “accept”. 
If goto(L,, A) = Lj, then goto[i, Al = j. 
All entries not defined by rules (a) through 
(e) are made “error”. 

Let us consider the number of new states 
added by the above algorithm. Because the num- 
ber of LALR(l) states is exponential in the size 
of the grammar at worst case [6], it is not difficult 
to conjecture that the number of these new states 
is also exponential. Lemma 6.3 shows that the 
conjecture is true. However, for typical program- 
ming language grammars, it is likely that the 
number of these new states is linear because the 
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number of LALR(1) states approximates to dou- 
ble of the number of nonterminals [6]. 

Lemma 6.3. For each II > 0, let 

G,=({S, A,, B,, A,, B,,...,A,, B,}, 

{O, 1, a, a,, a,,...,anl, 

{S +A,B,, A, + a, A, -+ lAoa,, 

Ai-1 -+ lAjai_,, Ai + OA,a,, 

A, -+ OA,a,, B, + a, B, --) lB,a,, 

Bi-l +  lBia,_,, B, --f OB,a,, 

Bj+OB,aj, where l<i<nn), S) 

be a grammar; and R = (A, 3 a,,, B, * a,). Then 
there is a constant c > 0 such that when Algorithm 
6.2 is applied for the augmented grammar of G,, 
and the set R, the number of distinct second com- 
ponents of the set D is at least 2’“. 

Our LR parsing program (driver program) is 
similar to ordinary one [3]. When action[s, a] is 
shift s’, reduce A + p, or accept, the program is 
the same with ordinary one. When action[s, a] = 
repair E, it calls the function repairer with the 
current symbol a, the current parsing stack and 
the set E of repair patterns. If the function 
returns ((u * /?, T), then the message for “a is 
replaced with p” is printed, the parsing stack is 
replaced with T, and normal parsing is continued. 
If it returns fail or action [s, a] = error, then 
some other error recovery schemes such as [51 are 
used. 

function repairer(a, S, E) 
begin 

for each repair pattern (Y = p in E, in low 
cost first order do begin 

T := S; {Copy the stack S into temporary 
stack T} 
pop ( a I symbols off T; 
set ip to point to the first symbol of pa$ 
and set shiftable to true; 
while the symbol pointed to by ip is not $ 
and shiftable do begin 

let X be the symbol pointed to by ip; 
if action[ top(T), X ] = shift s or goto 

[top(T), X] =s for some s then {top(T) 
returns the top element of T} 

push s on T and advance ip to the 
next symbol 

else if action[s, a] = reduce A + y, 
where X ** a6 for some 6, and ) T 1 > 

I Y I then 
pop I y I symbols off T and then push 
goto[top(T), A] on T 

else shiftable := false 

end 
if shiftable then return (a 3 p, T) 

end 
return fail 

end 

Our model can be implemented efficiently 
when each replacement part of repair patterns is 
a substring of a right-sentential form and when 
Algorithm 6.2 does not cause additional parsing 
conflicts. If the total execution time of the func- 
tion repairer during the parsing of the input is 
linear of the input length, the execution time of 
our parsing program is linear, since the ordinary 
LR parsing time is linear [6]. Each call of the 
function repairer takes a constant time, which is 
determined by the underlying grammar and re- 
pair patterns [ll]. Since it guarantees a successful 
shift of symbol [ll], the function is called at most 
the input length times. Hence its total execution 
time is linear. 

7. Conclusion 

We have formally defined the repair pattern, 
and given examples of repair patterns which can 
describe some kinds of errors that are difficult to 
repair in other schemes. This demonstrates ex- 
pressive power of the repair patterns. 

We have proposed a syntactic error repair 
model, using repair patterns, as a function from 
string to string. The model can be efficient when 
each replacement part of repair patterns is a 
substring of a right-sentential form and the repair 
patterns does not cause additional parsing con- 
flicts. Furthermore, the model is considered to be 
flexible in the sense that it can control the trade- 
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off between quality and overhead of error repair 
(via repair patterns). 

We have proposed an algorithm for construct- 
ing the LALR parsing table with error repair 
entries and LR parser driver using the parsing 
table. 
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