
Information Processing Letters 47 (1993) 189-196 .
Elsevier

27 September 1993

Syntactic error repair using repair patterns
In-Sig Yun, Kwang-Moo Choe and Taisook Han
Programming Languages Laboratory, Department of Computer Science, Korea Advanced Institute of Science and Technology,
373-1, Kusong-Dong, Yusung-Cu, Taejon 305-701, South Korea

Communicated by K. Ikeda

Received 22 September 1992
Revised 21 April 1993 and 24 June 1993

Abstract

Yun, I.-S., K.-M. Choe and T. Han, Syntactic error repair using repair patterns, Information Processing Letters 47 (1993)

189-196.

A syntactic error repair model is proposed, and is defined as a partial function from strings to sentences. The replacement

of a substring of a string with a substring of a sentence is described by a repair pattern, which is roughly a pair of strings of

grammar symbols. The model can be efficient with some restriction on repair patterns. An LR-based implementation of the

model is discussed.

Keywords: Compilers; syntactic error recovery; syntactic error repair model; repair pattern

1. Introduction

Syntactic ereror recovery and repair schemes
have been an important aspect of compiler de-
sign, and accordingly have received a great deal
of attention in the literature (see, e.g., the bibli-
ography by van den Bosch [101X

Error repair schemes try to transform the erro-
neous substrings of a string into “similar” but
syntactically correct substrings. In a more formal
setting, if a strong uav is not in a language L
such that u is a prefix of a sentence in L but uxa
is not, then the schemes may attempt to find a
pair of strings (x, y) such that uya is a prefix of a
sentence in L, and repeat this process for uyav.
We may consider finding such a pair of strings
(x, y) as a main problem in local error repair.

Correspondence to: I.-S. Yun, Programming Languages Labo-

ratory, Department of Computer Science, Korea Advanced
Institute of Science and Technology, 373-1, Kusong-Dong,

Yusung-Gu, Taejon 305-701, South Korea. Email: yunis@
plhae.kaist.ac.kr.

Usually, the pair (x, y) is found by some algo-
rithm based on syntactic structures of grammars
[1,4,51.

We present a method for describing such pairs
(x, y). The pairs (x, y) are described by a repair
pattern, which is roughly a pair (a, p) of two
strings of grammar symbols such that (Y a* x and

P-* y with some restriction on p and y. The
pair (a, p) is denoted by LY * /?. We also propose
an error repair model as a function using the
repair pattern.

The following section describes the necessity
for the repair pattern and reviews terminology
and notations used. Section 3 contains a rationale
of repair patterns and our error repair model. In
Section 4, we formally define the repair pattern,
and present an error repair model as a function.
We also give theorems concerning some proper-
ties of the model and helping write repair pat-
terns. Section 5 contains examples of repair pat-
terns which can describe ,some kinds of errors
that are difficult to repair in other schemes. This

0020-0190/93/$06.00 0 1993 - Elsevier Science Publishers B.V. All rights reserved 189

Volume 47, Number 4 INFORMATION PROCESSING LETTERS 27 September 1993

demonstrates description ability of repair pat-
terns. In Section 6, an algorithm for construction
of an LALR parsing table with error entries is
given, and an LR driver program for our model is
discussed. The final section gives a conclusion.
All proofs of theorems and lemmas in this paper
are given in [111.

2. Motivation and terminology

Virtually all error repair schemes can have a
poor repair for a substring x of a certain input
string. If y is the most plausible repair for x,
repair pattern x *y requests the error repair
scheme which supports repair pattern to handle
this case. The model can transform a poor repair
into a good one when a repair pattern is given for
such poor case.

Since users of parser generators [3] may want
trade-off between quality of repair and compile
time, it is desirable that parser generators have
switches for controlling quality of repair. Most
parser generators produce error handlers which
adopt an error scheme without such switches. In
our scheme, because repair patterns are given as
input to a parser generator, we can control the
balance between efficiency and quality of repair.

Even the minimum distance repair [2] is not
always the “most plausible” repair. Consider, for
example, a Pascal fragment “if 1 < = i < = 7 then
. . . “. A minimum distance repair seems “if 1 < =

i + 7 then . . . “, but the most pIausible repair is
quite likely to be “if (1 < = i) and (i < = 7) then
. . . “. Without mathematical knowledge that 1 G i
6 7 denotes 1 G i and i < 7, the repair cannot be
obtained. The knowledge cannot be derived from
the grammar, either. It, however, can be de-
scribed by the repair pattern “E, < = id < = E,
=+ (E, < = id) and (id < = E,)“, where the sub-
scripts in E, and E, distinguish two instances of
E, which is a nonterminal for expression. A for-
mal model based on only syntactic structure gen-
erated by a grammar does not know human er-
rors.

In this paper we use the basic notions of
grammars and parsing in [3]. A (context-free)
grammar G is a quadruple (N, 2, P, S>, where
N, C and P are finite sets of nonterminals, termi-

190

nals and productions, respectively, and S EN is
the start symbol. A symbol in N U 2 is called a
grammar symbol. We will use the following nota-
tional conventions. A, B and S denote nontermi-
nals; X and Y denote grammar symbols; a, b and
c denote terminals; u, L’, w, x, y and z denote
strings of terminals; and LY, p, y, 6 and 17 denote
strings of grammar symbols. A symbol X is said
to be useful if either X = S or S d* LYXP d* w
for some (Y, p and w. Otherwise X is useless. A
grammar is said to be reduced if it contains no
useless symbols. If L is a language and uu E L,
then u is called a prefix of L. L(y) denotes

(w I y -* WI.

3. Rationale

This section deals with the rationale of the
repair pattern and our error repair model. Let us
start with a motivating example. A common error
in if statement of Pascal is to put in an extrane-
ous semicolon at the end of a statement between
then and else [3&l. To repair the error, the semi-
colon is to be deleted under “the context”. We
may express this type of error and its repair as

“if expr then stmt, ; else stmt,

- if expr then stmt, else stmt,“,

which is a repair pattern. The left and right part
of 3 are called the pattern part and replacement
part, respectively. Here, if, then, else and “;” are
terminals; and expr and stmt (stmt, and stmt,
are two distinguished stmt ‘s> are nonterminals.
An instance of this type error is “if i > j then
max := i ; else max := j”, and its repair is “if i > j
then mux := i else max := j”.

Usually, as in the example, some terminals in
repair patterns represent actual repairs, and the
other terminals and all nonterminals represent a
context. The pattern part can be any string of
grammar symbols, but the replacement part can-
not have new nonterminals which do not appear
in the pattern part, since no context can be made.

When “if expr then stmt, ; else stmt,” de-
rived “if i > j then mux := i ; else max := j”, non-
terminals exp, stmtl and stmt, derive “i > j”,

Volume 47, Number 4 INFORMATION PROCESSING LETTERS 27 September 1993

“max := i” and “max := j”, respectively. Such
strings of terminals are obtained by function yield.

Under the context that the replacement part is
aliowed but its pattern part is not, if a portion of
the input matches a string derived from the pat-
tern part during parsing the input, then it is
replaced with its repair, which is the replacement
part with its nonterminals replaced by their
yield’s For example, the nonterminals exp, stmt,
and stmt, are replaced with “i > j”, “max := i”
and “max := j”, respectively. This is a rationale of

the definition of function repair.
When a portion of the input matches to sev-

eral pattern parts of repair patterns simultane-
ously, a repair pattern is chosen by comparing
with “cost”. For this purpose, the cost part of a
repair patterns is introduced. If two or more
portions of the input which begin at the same
position match pattern parts of repair patterns,
then it is reasonable to choose repair patterns
corresponding to the shortest portion for imple-
mentation efficiency. Hence we define LCR, this
way. In case several portions of the input match
pattern parts of repair patterns, the repair pat-
tern corresponding to the leftmost portion is cho-
sen. The reason is that most parsers scan the
input from left to right. This reflects the defini-
tion of repairer,.

4. Repair pattern and error repair model

This section deals with the relevant definitions

of the repair pattern and our error repair model.
There is a string cy of grammar symbols of an
unambiguous grammar such that some string in
L(a) can have several rightmost derivations from
CY. For example, consider an unambiguous gram-
mar for expressions from [3]:

(IE, T, F), {+, *, (,>, Id},

{E-,E+T, E -+T,T+T* F,T+F,

F+(E), F+id], E).

Then the string id * id * id has two rightmost
derivations from the string E * T. A string CY of
grammar symbols is said to be ambiguous if some
strong in L(cr) has two or more rightmost deriva-

tions from CY. Otherwise, (Y is unambiguous. For
string p of grammar symbols, NP is defined to
denote the set of all nonterminals which appear
in p on the assumption that each symbol in p is
distinguished.

Definition 4.1 (Repair pattern). Let (Y be an
unambiguous string of a grammar G, p be a
string in (2 u N,)*, and c be a nonnegative inte-
ger. Then (a, p, cl is called a repairpaftem of G,
and denoted by (Y * p(c) or by (Y *p if c is
irrelevant. a, /3 and c are called the pattern part,
replacement part and cost part, respectively.

When a string a derives a string x, yield,(A,
x) is defined to be x’s substring derived from A.
The first component of its domain is extended to
strings naturally. The restriction that (Y is an
unambiguous string makes yield, a function.

Definition 4.2 (Function yield,). Let (Y =
x,x,. . . X,, be an unambiguous string of a gram-
mar G = (N, 2, P, S). The function yield, from
IV, x L(a) to J$* is defined by yield,(A, x) =xi
if A =X,, where X, j* xi for all 1 <j < n with
x =x1x2.. . x,. The domain of yield, is extend to
(2 U NJ* XL(a) as follows:

yield,(s, x) = E,

yield,(a, x) = a for all a in C, and

yield,(Xp, x) = yield,(X, x) yield,(p, x) .

The function repair(u, U, (Y 2 p> is defined to
be the set of all triples (x, y, (Y *p) such that
x E L(a) is a prefix of u, y is yield,(p, x), there
is an error in x or at the symbol following x, and
the error is repaired by the replacement of x
with y.

Definition 4.3 (Function repair). Let R be a finite
set of repair patterns of a grammar G =
(N, 2, P, S). The function repair from x * X Z*
x R to 2P*x’*xR is defined by

repair(u, U, r)

= {(x, y, r) Ir=cy * p, x is the longest

191

Volume 41. Number 4 INFORMATION PROCESSING LETTERS 27 September 1993

prefix of u with (YJ* x, y =yield,(P, x),

u =xau’, uxa is not a prefix of L(G),

and S ** ypS d* uyaz for some 2, 6,

and y d* u}.

The phrase “the longest prefix of u” in above
definition is used, since several prefixes of u can
be derived from (Y. For example, prefixes id and
id + id of a string id + id are derived from non-
terminal E of the grammar for expressions.

Theorem 4.4. Let a - p be a repair pattern of a
grammar G. Zf (x, y) E repair(u, c, CY - /?) then
u is a prefix of L(G), x is a prefix of L’, and there
exists an error in uxa and not in uya, where v = xav I.

Any input string can be edited to a syntacti-
cally correct string by a sequence of primitive edit
operations of inserting or deleting of a symbol, or
replacing one symbol with another [1,2]. The re-
pair patterns are used to describe the primitive
edit operations, and may be classified according
to them. We define that the repair patterns (YP
2 aYP, cuXp 3 ap, and cuZp a czW/? are for an
insertion of Y, for a deletion of X, and for a
replacement of Z with W, respectively. We extend
the definitions to two or more symbols, for exam-
ple, a/3 * aXY@ is a repair pattern for insertions
of X and Y.

The following theorem shows a limitation of
the model, and implies that if any input should be
repaired then some other repair scheme must be
incorporated into the model in case all repair
patterns fail.

Theorem 4.5. For some grammar G, there is an
error that cannot be described by any repair pattern
in any finite set of repair patterns of G.

The function LCR,(u, U) for a set R of repair
patterns is defined to be the set of all triples in
U TE R repaidu, u, r) whose cost are the lowest.
Note that the shorter the first component of a
triple is, the lower its cost is.

192

Definition 4.6. (Function LCR,, least-cost repair).
Let R be a finite set of repair patterns of a
grammar G = (N, -C, P, S). The function LCR,
from s* XC” to 2z*X’*XR is defined by

LCR,(u, U) = {(x, Y, r) ~AIcost(x, Y, r)

< cost(x’, y’, r’) for all

(x’, Y’, r’) EA},

where A = lJrER repairb, u, r>, w = max(c 1(x,
y, (Y *p(c)) EA) + 1, and cost(x, y, r) = I x I x

w + the cost part of r.

We are ready to present our error repair model
as a function. First, let us imagine the syntactic
error repair process performed by human beings.
Suppose that there are a program with many
syntactic errors and a compiler halting after the
first detection of a syntactic error. One compiles
the program with the compiler. When the com-
piler detects the first syntactic error, scanning
left-to-right, it halts with an error message. Then
one finds what is the error by the aid of the
message, and repair the error in the program.
One repeat this process for the repaired program
until no syntactic errors are found by the com-
piler.

For a given set R of repair patterns, the func-
tion repairer, is recursively applied to the repair
of the first syntactic error, if any. This is our error
repair model. In the following, k denotes the
point of the first error and LCR,(a,. . . ai,
a,+1... a,> f fl implies that there is an error in
~~+,a~+~. . . a,.

Definition 4.7 (Function repairer,). Let R be a
set of repair patterns of a grammar G =
(N, 2, P, S). The function repairer, from J?* to
x* is defined by

repairerR(ala,. a,)

=

I

a,a,...an

if LCR,(a ,... a,, a,+,...a,)=ti

for all 0 < i < n,
repairer~(alaz...akYak+lxl+lak+,xl+z... n a>

otherwise,

where k = minli 1 LCR,(a, . . . ai, Ui+ 1.. . a,> # @I

Volume 47, Number 4 INFORMATION PROCESSING LETTERS 27 September 1993

and choose a (x, y, r> from LCR(Ja,. . . uk, Example 5.2. if A = 1 then write(l) ,, ; f else

‘k+t... a,) deterministically. w&e(2);

Theorem 4.8. For any finite set R of repair pat-
terns, the function repairer, is computable.

We discuss how to write a repair pattern. Its
pattern part is an unambiguous string, and its
replacement part is a substring of a sentential
form (otherwise, it is useless). For these, a few
sufficient conditions are given below.

The semicolon preceding the else is illegal and
the obvious repair is to delete it. This is quite a
difficult repair to realize because “if A = 1 then
write(l)” reduces to a nonterminal before the
error is detected [1,4,6]. A repair pattern “if expr
then stmt; else * if expr then stmt else” for
deletion of “;” describes the error.

Example 5.3. . . . ; ,, A t = B then write(l) else
write(2); . . .

Theorem 4.9. Let (Y and /3 be two unambiguous
strings. Then so is ap if (y I xy E L(o)) and {x I xy
E L(p)} are disjoint.

Theorem 4.10. A substring of a sentential form of
an unambiguous reduced grammar is unambigu-
ous.

An if is missed and obvious repair is to insert
it at preceding A. Many error repairs have a
great deal of difficulty with missing statement
headers [7]. A repair pattern “expr then * if expr
then” for insertion of if describes the error.

Example 5.4. a := b ,, t c . . .

Theorem 4.11. Let G be a reduced grammar, and
let y be a substring of a string derived from any
grammar symbols of G. Then y is a substring of a
sentential form.

5. Examples of the repair patterns

The repair pattern may be used when the
incorporated model has a poor repair for some
error, and when we wish to guarantee correct
treatment of rather common error. The following
examples describe some kind of errors that are
difficult to repair in other schemes with erro-
neous Pascal fragments. This demonstrates de-
scription ability of the repair patterns. The point
of detection is indicated by “ t” and that of
actual error guessed is indicated by “ fl”.

A symbol is missed between b and c. Three of
many possible repairs are “u := b + c . . . “, “u :=
6; c . ..” and “a := b [c . . . “. With additional
input symbols which distinguish the current situa-
tion from the other possibilities, “a := b c + . . . “,
“a := b c := . . . “, and “u := b c] . . . “, more plau-
sible repair, in each case can be chosen [l]. The
three possible repairs are described by repair
patterns “id := expr expr + * id := expr + expr
+ “) “id := expr id := =a id := expr; id := “, and

“id := exprlist] * id := [exprlist]” for insertion of
“ + >9, ‘,;,9, or “[U.

Example 5.5. if ,, a =b or c T d then...
An obvious repair is “if (a = b) or (c = d) then

Example 5.1. ,, p rocedure factorial (x : integer ;
var fact: integer >: t integer;

. . . “. Most repair schemes may not be entirely
satisfactory because they give no insight into why
the error was made. That is, expressions such as
“ . . . a=b or c=d . ..” look correct and indeed
are correct in many languages 171. This kind of
errors can be described by a repair pattern

The procedure is used where a function seems
to be intended. The difficulty of repair for this
type is pointed out in [4]. A repair pattern “pro-
cedure id (formalpanns): typeid * function id
(formalparms): typeid” for replacement of proce-
dure with function describes the error.

“sexpr, relop term, or sexpr, relop term,

j (sexpr, relop term 1) or (sexpr, relop term,) ”

for insertions of “C’, “I”, “(” and “I”, where the
sexpr stands for the simple expression, and relop
denotes the relational operators = , < > , < ,
>, <= or >=.

193

Volume 47, Number 4 INFORMATION PROCESSING LETTERS 27 September 1993

6. Discussion on LR-based implementation

This section discusses the possibility of an im-
plementation of our error repair model with re-
pair patterns (Y =. p whose replacement part is a
substring of a right-sentential form. Intuitively,
we extend the LR-based parser to be able to
parse (Y at states which “predict” p. When (Y is
parsed successfully instead of p at one of the
states, (Y in the parser stack is popped and p is
parsed with the extended parser.

The domain of the function goto [3] is ex-
tended to strings: goto(Z,, E) = I, and goto(I,,
Xa) =goto(goto(I,, X), a), where Z, is a set of
items. A definition of an efficient computation
method for LALR(k) lookahead set LA, can be
found in [9]. The following theorem shows how to
find the states which predict /3.

Theorem 6.1. Let p be a substring of a right-
sentential form of an augmented grammar G’ =
(N’, 2, P’, S’), and let I, be a set of items in the
collection of sets of LALR(1) items for G’. Let p’
be the longest prefix of p such that goto(I,, p’) =
I,#@, and let p=p’y. If either /3=/3’ or ye
ol,,,(Z,,[A-+6*]) forsomeproductionA+6,
then there is y such that goto(Z,, y) = I, and y/3w
for some w is a right-sentential form.

Step 2 of Algorithm 6.2, for each repair pat-
tern (Y * /3, introduces item [p + -(Y, al at states
which predict p, where p in the item is treated as
a new nonterminal. In step 3, sets of pairs of
items are found. The function closure for LR(1)
is found in [3]. Step 4 renames pairs of items. The
last step constructs the parsing table, which has
an additional type of move, repair E. The con-
flicts between ordinary item and “error” item are
resolved in favor of the former. This cannot re-

solve all conflicts, even though a given grammar
G is LALR(1).

Algorithm 6.2. Constructing an LALR parsing
table with error repair entries.

Input. An augmented grammar G’ = (N’, 2, P’,
S’) and a finite set R of repair patterns whose
replacement part are a substring of some
right-sentential form.

194

Output. An LALR parsing table with error repair
entries.

Method.

4.
5.

Construct C = {Z,, I,, . . . , I,,}, the collection of
sets of LALR(1) items for G’.
For each Z, in C, find 1, = ([p + *(Y, al I a *
p in R, /3’ is the longest prefix of /? such that
goto(Z,, p’) =I, # @, either p = p’ or 77 E
LA,,,(Z,, [A+S-1) for some A+6 in P’
with /I = @‘n).
Find the smallest set D such that D =
{(Z,, .I,)] u {(I, K) I(I,, KJ ED, X is a gram-
mar symbol, I = goto(Z,, X),

K=cZosure({[p +aX-y, all

[P-o-XY, ul q} u-J&J

and (I, K)#(@, fl).
Let D = (L,, L1,..., L,] with L, = (I,,, I,).
State i of the parser is constructed from Li =
(I,, Kq). The tables action and goto for state
i are determined as follows:
(a) If [A + u - a/3, b] is in Z, U K, and

goto(L;, a) = L;, then set action[i, al to

(b)

cc>

Cd)

,
“shift j”.
If [A+a*, a] is in Z, u K, with A in
N’ - (S’}, then set action[i, a] to “reduce
A + CY”.
If E # (d, [A -+ y * ~6, b] is not in I, and

[A-+6*, a] is not in I,, then set
action[i, a] to “repair E”, where E = (cu
*pI[p+(Y’, alq$
If [s’ + S * , $1 is in Z,, then set action[i, a]
to “accept”.
If goto(L,, A) = Lj, then goto[i, Al = j.
All entries not defined by rules (a) through
(e) are made “error”.

Let us consider the number of new states
added by the above algorithm. Because the num-
ber of LALR(l) states is exponential in the size
of the grammar at worst case [6], it is not difficult
to conjecture that the number of these new states
is also exponential. Lemma 6.3 shows that the
conjecture is true. However, for typical program-
ming language grammars, it is likely that the
number of these new states is linear because the

Volume 47. Number 4 INFORMATION PROCESSING LETTERS 27 September 1993

number of LALR(1) states approximates to dou-
ble of the number of nonterminals [6].

Lemma 6.3. For each II > 0, let

G,=({S, A,, B,, A,, B,,...,A,, B,},

{O, 1, a, a,, a,,...,anl,

{S +A,B,, A, + a, A, -+ lAoa,,

Ai-1 -+ lAjai_,, Ai + OA,a,,

A, -+ OA,a,, B, + a, B, --) lB,a,,

Bi-l + lBia,_,, B, --f OB,a,,

Bj+OB,aj, where l<i<nn), S)

be a grammar; and R = (A, 3 a,,, B, * a,). Then
there is a constant c > 0 such that when Algorithm
6.2 is applied for the augmented grammar of G,,
and the set R, the number of distinct second com-
ponents of the set D is at least 2’“.

Our LR parsing program (driver program) is
similar to ordinary one [3]. When action[s, a] is
shift s’, reduce A + p, or accept, the program is
the same with ordinary one. When action[s, a] =
repair E, it calls the function repairer with the
current symbol a, the current parsing stack and
the set E of repair patterns. If the function
returns ((u * /?, T), then the message for “a is
replaced with p” is printed, the parsing stack is
replaced with T, and normal parsing is continued.
If it returns fail or action [s, a] = error, then
some other error recovery schemes such as [51 are
used.

function repairer(a, S, E)
begin

for each repair pattern (Y = p in E, in low
cost first order do begin

T := S; {Copy the stack S into temporary
stack T}
pop (a I symbols off T;
set ip to point to the first symbol of pa$
and set shiftable to true;
while the symbol pointed to by ip is not $
and shiftable do begin

let X be the symbol pointed to by ip;
if action[top(T), X] = shift s or goto

[top(T), X] =s for some s then {top(T)
returns the top element of T}

push s on T and advance ip to the
next symbol

else if action[s, a] = reduce A + y,
where X ** a6 for some 6, and) T 1 >

I Y I then
pop I y I symbols off T and then push
goto[top(T), A] on T

else shiftable := false

end
if shiftable then return (a 3 p, T)

end
return fail

end

Our model can be implemented efficiently
when each replacement part of repair patterns is
a substring of a right-sentential form and when
Algorithm 6.2 does not cause additional parsing
conflicts. If the total execution time of the func-
tion repairer during the parsing of the input is
linear of the input length, the execution time of
our parsing program is linear, since the ordinary
LR parsing time is linear [6]. Each call of the
function repairer takes a constant time, which is
determined by the underlying grammar and re-
pair patterns [ll]. Since it guarantees a successful
shift of symbol [ll], the function is called at most
the input length times. Hence its total execution
time is linear.

7. Conclusion

We have formally defined the repair pattern,
and given examples of repair patterns which can
describe some kinds of errors that are difficult to
repair in other schemes. This demonstrates ex-
pressive power of the repair patterns.

We have proposed a syntactic error repair
model, using repair patterns, as a function from
string to string. The model can be efficient when
each replacement part of repair patterns is a
substring of a right-sentential form and the repair
patterns does not cause additional parsing con-
flicts. Furthermore, the model is considered to be
flexible in the sense that it can control the trade-

195

Volume 47, Number 4 INFORMATION PROCESSING LETTERS 27 September 1993

off between quality and overhead of error repair
(via repair patterns).

We have proposed an algorithm for construct-
ing the LALR parsing table with error repair
entries and LR parser driver using the parsing
table.

Acknowledgment

The authors would like to thank the anony-
mous referees for valuable comments. Also, the
coordinating efforts of the communicating editor,
Professor K. Ikeda, should be deeply appreciated.
The first author further wishes to thank Professor
Do-Hyung Kim and Miss Jiyun Lee for valuable
comments and proofreading the draft.

References

[l] S.O. Anderson, R.C. Backhouse, E.H. Bugge and C.P.

Stirling, An assessment of locally least-cost error recov-

ery, Compuf. J. 26 (1) (1983) 15-24.
[2] A.V. Aho and T.G. Peterson, A minimum distance

error-correcting parser for context-free languages, SIAM
J. Compur. 1 (4) (1972) 305-312.

[3] A.V. Aho, R. Sethi and J.D. Ullman, Compilers: Princi-
ples, Techniques, and Tools (Addison-Wesley, Reading,

MA, 1986).

[4] M.G. Burke and A.F. Gerald, A practical method for LR

and LL syntactic error diagnosis and recovery, ACM
Trans. Programming Language Systems 9 (2) (1987) 164-
197.

[5] K.-M. Choe and C.-H. Chang, Efficient computation of

the locally least-cost insertion string for the LR error

repair, Inform. Process. Letr. 23 (6) (1986) 311-316.
[6] C.N. Fischer and R.J. LeBlanc, Crafting a Compiler

(Benjamin/Cummings, Menlo Park, CA, 1986).

[7] C.N. Fischer and J. Mauney, On the role of error produc-

tions in syntactic error correction, Tech. Rept. #364,

Dept. of Computer Sciences, University of Wisconsin-

Madison, 1979.

[8] G.D. Ripley and C.D. Frederick, A statistical analysis of

syntax errors, Comput. Lang. 3 (1978) 227-240.
[9] J.C.H. Park, K.-M. Choe and C.-H. Chang, A new analy-

sis of LALR formalisms, ACM Trans. Programming Lan-
guage Systems 7 (1) (1985) 159-175.

[lo] P.N. van den Bosch, A bibliography on syntax error

handling in context free languages, ACM SIGPLAN Not.

27 (1992) 77-86.

[ll] IS. Yun, Syntactic error repair using repair patterns,

Dept. of Computer Science, KAIST, in preparation.

196

