Journal of Systems Architecture 56 (2010) 136-149

Contents lists available at ScienceDirect

Journal of Systems Architecture

journal homepage: www.elsevier.com/locate/sysarc

Composition-based Cache simulation for structure reorganization

Keoncheol Shin?, Hwansoo Han"*, Kwang-Moo Choe?

2 Department of Computer Science, KAIST, Republic of Korea
b Department of Computer Engineering, Sungkyunkwan University, Republic of Korea

ARTICLE INFO ABSTRACT

Article history:

Received 1 December 2008

Received in revised form 7 September 2009
Accepted 11 January 2010

Available online 22 January 2010

Finding the best data layout has been an ultimate goal of memory optimization. Even with data access
profile, heuristic algorithms are needed to reorganize data layout for better locality. The best layout could
be found by running the given application with all possible data layouts and selecting the best performing
layout. This approach, however, can incur too much overhead, particulary when the number of possible
layouts are too many. In this paper, we present a composition-based cache simulation for structure reor-
ganization. Instead of running all possible layouts, we simulate only the primary subsets of layouts and
compose the cache misses for all layouts by summing up the cache misses of component subsets. Our
experiment with the composition-based cache simulation shows that the differences in the cache misses
are within 10% of the full cache simulation for 4-way and 8-way set associative caches. In addition to the
cache miss estimation, our heuristic algorithm takes account of the extra instruction overhead incurred
by structure reorganization. Our experiment with several structure intensive benchmarks shows the 37%
reduction in the L1D read misses and the 28% reduction in the L2 read misses. As a result, the execution

Keywords:

Field reorganization
Performance prediction
Cache simulation
Compiler optimization

times are also reduced by 19% on average.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

Memory hierarchy optimizations are key techniques to achieve
a good performance on modern architectures. Even on embedded
systems, deep memory hierarchies are employed to handle data-
intensive applications. For those applications, compiler optimiza-
tions have been viable solutions to improve the locality of data
accesses. Established techniques to improve locality include code
transformations such as loop tiling and loop permutation [1,2].
The effects of these techniques, however, are limited when pro-
grams are too complex and memory access patterns are irregular.
Recent studies focus more on data reorganization for better cache
performance [3-11]. The principal idea in these researches is to
place contemporaneously accessed data near one another in mem-
ory. By using such reorganizations, we can load closely related data
together into as fewer cache lines as possible without cache line
conflicts among them. Particularly, they target dynamically allo-
cated structures, since modern applications heavily use structure
objects allocated in the heap. They not only reorganize the relative
positions of objects, but also change the internal layouts of fields in
structure objects.

* Corresponding author. Address: Department of Computer Engineering, Sung-
kyunkwan University, 300 Cheoncheon-dong Jangan-gu, Suwon 440-746, Republic
of Korea. Tel.: +82 31 299 4594; fax: +82 31 299 4921.

E-mail address: hhan@skku.edu (H. Han).

1383-7621/$ - see front matter © 2010 Elsevier B.V. All rights reserved.
doi:10.1016/j.sysarc.2010.01.002

In this work, we present a new field reorganization technique
which adopts all the effective locality enhancing methods. Our
technique adopts well known optimization techniques such as
aggregating, compacting, and grouping fields from multiple in-
stances of the same structure type [3,5,9,12]. To find the most
promising layout we rely on profiling runs with cache simulations.
Pure static approaches we explored in [13,14] also achieve rela-
tively good performance in structure reorganization, but the pro-
file-based approach in this work finds the better layouts for
target structures but with the increased overheads in profiling
and cache simulation. These overheads, however, can be justified
for server applications and embedded applications, since those
applications often run for a long period time with similar inputs.
Optimizing the performance for those types of applications is
worth the all costs. Since finding the best performing layout is still
an NP-hard problem, even if we know the exact field access se-
quence [15], we present a performance estimation technique with
the composition-based cache simulation. The resulting layouts
provide good field reorganizations for cache locality. Our approach
compares the performance for all possible layouts but not execut-
ing the programs multiple times with all different layouts. Instead,
we separately simulate the cache behavior for all the primary sub-
sets of field layouts during the profile run. After profiling, we can
efficiently obtain the cache simulation result of any possible layout
by combining the simulation results of primary subsets in the lay-
out. In our performance estimation, we also take account of extra
computation overhead due to reorganized field accesses [12].

http://dx.doi.org/10.1016/j.sysarc.2010.01.002
mailto:hhan@skku.edu
http://www.sciencedirect.com/science/journal/13837621
http://www.elsevier.com/locate/sysarc

K. Shin et al./Journal of Systems Architecture 56 (2010) 136-149

The remainder of this paper is organized as follows. We first de-
scribe the motivation of our method and the basic ideas of our field
reorganization. We then provide a detailed description of our field
layout selection based on composition-based cache simulation.
Next, we experimentally evaluate our method. Finally, we discuss
related work and conclude our paper.

2. Motivation

Many studies have shown that reorganizing fields of key struc-
tures improves the performance due to the enhanced locality in

struct Node {
int key;
char datal6];
Node *next;
} *T;

// 4 bytes
// 6 bytes
// 4 bytes

char* search(int key) {
struct Node *cur T;
while (cur != NULL) {

if (cur->key == key)
return cur->data;
cur->next;

cur

}

return NotFound;

Fig. 1. Motivating example: structure-type definition of Node and search() function
for the node list.

137

memory accesses. If a program frequently accesses a couple of par-
ticular fields in structures, we can improve cache locality by collo-
cating these fields in memory. Considering the example code in
Fig. 1, we find the search function in the example traverses a
linked list of Nodes and returns data field in the first Node with a
matching key. We notice that key and next fields are accessed every
iteration whereas data fields are accessed just once when the func-
tion finds the matching key. According to the access frequencies,
we can classify key and next as hot fields, and data as a cold field.
It is generally beneficial to fetch and store as many hot fields as
possible in the same cache line, since the cache performance can
be improved by increasing cache locality.

Rabbah and Palem proposed an interesting dynamic data remap-
ping method for cache locality, called DDRemap [9]. Their method
separates hot and cold fields by using profiled reference counts
and colocates the same fields from multiple structure instances in
pre-allocated memory pools. If we apply their DDRemap to the Node
structure in Fig. 1, the same fields from multiple structure instances
(0-1,0,,...,0,) are consecutively located as shown in Fig. 2a. In
their method, the fields from the same structure instance are
located with a constant interval (MaxFieldSize x MaxObjCnt, which
is marked with a bold line in Fig. 2a). MaxFieldSize is the size of
the largest field among all fields within the structure. MaxObjCnt
is the maximum number of structure instances that can be allo-
cated within a memory pool. We can statically calculate MaxObjCnt,
since the size of a memory pool and the sizes of all fields are known
at compile time. This method uses padding spaces between fields to
make all field offsets constants and access every field with one load
instruction. This layout improves the locality for most cases, but
potentially hurt the performance when large padding spaces are
added for structures with various field sizes. In addition to their
scheme, many researchers found that grouping related fields within
a structure also improves the performance further [3,5,10]. When

, maximum P
I field size 1 P— data addin;
' P— next |:| ")
O,.key | 0O,.key | O;.key | O,.key
0O,.data 0,.data \ O;.data O,.data
O;.next | O,.next | O;.next O,.next
MaxObjCnt = n
(a)
P
Okey | Orkey | .. | Oikey O.key | Odata | Opdata |
. O;.data O,.data O;.next | 0,.next | /] O;.next | v.. |Op.next
P—data P— next
(b)
=]
O, .key | O,.data | O,.next | 0O,.key | 0O,.data | O,.next | . O,.key
0O;.data ROi.neXt O,.key O,.data O,.next
\ P— data \ P— next
(c)
0.8 0.2, /P P— next
O, .key |Ol.next| 0,.key |02.next P—:_data\—k v O;.key | Oj.next
m“"ncxt{l Opdata | O,.data | | Wﬁn.dam
0.2 0.2,
(d)

Fig. 2. (a) Structure layout of DDRemap [9], (b) structure layout after compacting fields [12], (c) structure layout of pool allocation [16], (d) structure layout after grouping and

compacting fields [13,14,12].

138 K. Shin et al./Journal of Systems Architecture 56 (2010) 136-149

all feasible layouts primary subsets

subset cache simulation

E 2

combine subset results

cache misses
for all layouts

Fig. 3. Composition-based cache simulation: simulate cache with primary subsets
and combine the subset results to produce all cache misses.

field grouping is additionally employed to DDRemap, making all the
groups have the same size becomes more difficult or imposes
restrictions on grouping. If field grouping is still intensively used,
quite large padding spaces could be inserted.

On the other hand, compacting field schemes, as shown in
Fig. 2b and d, eliminate all the padding spaces and still allow com-
pact colocating and grouping without restrictions. These layouts
with compacted fields, however, intrinsically require extra instruc-
tions for field offset calculations at run time [12]. Nevertheless,
they can improve the performance by minimizing the calculation
overheads. Pool allocation technique can have a similar field layout
shown in Fig. 2c when they use type-homogeneous pools [16]. This
layout also compactly uses a memory pool without padding spaces.
Fig. 2d is extended from Fig. 2b by combining field compacting
with field grouping [13,14,12]. Since the closely accessed fields
(key and next) are placed consecutively in a group, fewer cache
lines are required and the resulting layout shows an even further
improved locality. All these techniques use custom memory alloca-
tions. Large chunks of heap memory, called pools, are allocated in
advance and individually managed with inexpensive allocation
routines. The fields bounded by dotted lines and filled with vague
colors in Fig. 2 represent the memory spaces to be used for future
allocations. The memory pool scheme reduces management over-
heads and improves spatial locality by reducing the size of working
set.

Original binary
executable

1: Profiling step

Target structure

Target structure

When we consider field reordering and grouping, finding the
most promising layout is very difficult even if we know the access
patterns of field from profiling runs. A straight forward approach is
running the given program multiple times with all feasible layouts.
Although this approach is actually doable for the structures with a
small number of fields, this is impractical in general. There can be
many target structures and the number of feasible layouts expo-
nentially increases as the number of fields increases. In such cases,
our composition-based cache simulation can be used to estimate
the performance of all feasible layouts. Fig. 3 shows a rough idea
of composition-based cache simulation. First, we extract the pri-
mary subsets of the fields that can constitute the all feasible lay-
outs. Next, we simulate the cache only for the primary subsets
and combine the simulation results to obtain the cache behaviors
of all feasible layouts. In the next section, we will describe how
we use this cache simulation scheme to estimate the performance
of each layout and select the best performing layout.

3. Performance estimation

The overall process of our structure reorganization is outlined in
Fig. 4. The entire process consists of three steps. In the first step, we
profile the given program with a small training input and select
frequently accessed structures as target structures for field reorga-
nization. We also obtain the sequences of field accesses for the se-
lected target structures. Based on the profiled field access pattern,
the second step determines the most promising field layout in
terms of cache locality and instruction overhead. It estimates the
performance of all feasible layouts and finds the most promising
one. In the final step, the code transformer extended from the CIL
compiler [17] generates a new source code which utilizes the field
layout with enhanced cache locality. In our early works [12-14],
we relied on the field affinity graph proposed in [5,6], which
approximates the cache behavior by increasing the weight of the
edge between two fields when those two fields appear within a
predefined distance on the access sequence. Meanwhile, we pres-
ent a more accurate method to directly capture the cache behavior
by using the composition-based cache simulation.

3.1. Composition-based cache simulation

Executing a program multiple times with all possible layouts is
often a prohibitively expensive approach, as the number of all

2: Cache simulation step

Cache simulation for

identification

0101011
1111001

Target memory
access filtering

access addresses

> subset component

Composition-based
performance estimation

I

Best performance structure layout

3: Code
transformation step

—kk

Original
source code

Custom allocation
routine generation

Modified
source code

with new layout

Access code
transformation

Fig. 4. Overall process of our field reorganization technique.

K. Shin et al./Journal of Systems Architecture 56 (2010) 136-149

possible layouts could be too large. Instead of exhaustively running
programs, we can compare the performance by simulating only the
important components that would vary from one run to another.
Since the cache performance is the main component of the perfor-
mance which would vary depending on field layouts in our case,
we simulate the cache to compare the performance among all pos-
sible layouts. To expedite the cache simulation, we simulate the
cache only with the field accesses from the target structures not
the all data accesses. Since the target structures are frequently ac-
cessed data, they tend to dictate the performance of the cache. In
the experimental section, we will show that other data accesses lit-
tle interrupt the cache behaviors of the target structures and the
cache behaviors of other data also change little across the multiple
changed layouts of target structures. Thus, simulating only the
target structures is a relatively reliable metric for the cache
performance.

139

Considering that a field grouping is a combination of the dis-
joint subsets of fields whose union is the whole structure, we can
obtain the simulated cache performance of a given field layout
by combining all the separate cache simulations of the field sub-
sets. We align pools to the addresses which are multiples of the
pool size. We also make the size of a pool equal to the size of all
the cache lines of the same way in each set. For instance, the size
of the all the cache lines of the same way for the 32 kB 8-way set
associative cache is 4 kB (32 kB/8-ways). Under such configuration,
we can guarantee that field groups in a pool do not cause conflict
misses with each other. When a program is running, it will access
the data not only from one pool but also from multiple pools and
also from outside the pools. Since most of modern processors are
equipped with set associative caches, such accesses will be accom-
modated in the cache without causing too much conflicts. With
these observations, we first separately simulate distinctive field

Accessed memory

Hash table
address sequences (Address:struct name:field name:alloc order)
0x2468 0x1224 : Node : next : 300
0x1228 : Node : key : 301
0x1246 0xl1l22c : Node 8 data 8 301
| 0x1234 : Node : next : 301 |
e 0x1238 : Node : key : 302
(a)
Start address of pool
1|8 (8| |8 |8 |8 | 88|28 8|88 0x0000
Pooll
&lele Pool Pool Pool 0x1000 Pool2
0x2000
838 |8 Pool3
0x3000
Assumption 1 Assumption 2
(b)

Pool_address =
(301/292)*4K = 0x1000
/

Rank =301%292 =9

0x0000 Pooll
] e 2 | | | | || OFNOO0 Pool2
fLi. -~ Pool2 0’/(/2,9?9/ Pool3
8 e
(c)
All subsets Virtual addresses of subset for cache simulation
{key} Null
{data} Null
{key, data} Null
{next} (301/292) *4K + (301 % 292) * 4 = 0x1024
{key, next} (301/292) * 4K + (301 % 292) * 8 + 4 = 0x104c
{data, next} (301/292) * 4K + (301 % 292) * 10 + 6 = 0x1060
{key, data, next} (301/292) * 4K + (301 % 292) * 14 + 10 = 0x1024

(d)

Fig. 5. Virtual address generation for multiple subset cache simulation: (a) hash table lookup for field name and allocation order matching, (b) two assumption for the field
address generation, (c) pool address and Rank calculation, and (d) field address generation for cache simulations of all subsets.

140 K. Shin et al./Journal of Systems Architecture 56 (2010) 136-149

subsets from all possible layouts. For the cache simulation result of
a particular layout, we combine the separate simulation results of
the field subsets that constitute the whole layout we want to sim-
ulate. In this manner, we can greatly reduce the simulation times
to obtain the cache performance of all possible layouts.

For example, if a program has a structure with n fields, we need
to simulate as many times as the total number of all possible lay-
outs to compare the cache performance in a naive approach. Our
subset simulation method only simulates 2" — 1 times for all
non-empty subsets, which is far smaller than the total number of
possible layouts when the number of fields is large. All the cache
simulation results are then generated by combining the simulation
results of the subsets. As shown in Fig. 5d, we only need to
simulate seven subsets for a Node structure with three fields
(key, data, next) and combine the simulation results of the subsets
to make 10 simulation results for all possible grouping layouts as
described later in Table 1c. According to our experiment, subset
simulation method takes a reasonable amount of time to finish
the simulation of all subsets, which is a far smaller time than exe-
cuting all possible layouts.

3.2. Cache simulation of all subsets

In the profiling step, we collect all the memory accesses, but filter
out many unnecessary memory accesses, since our cache simulator
needs only the addresses of the accessed fields in target structures.
For the purpose of filtering, we build a hash table during the profile
run. We augment the given program at all the allocation sites of tar-
get structures and record in the hash table the allocation order of the

Table 1

instance among the same structure type and the allocated addresses
for individual fields. Fig. 5a shows how we use the hash table for fil-
tering and cache simulation. For each address from the sequence of
target structure accesses we obtained in the profile run, we look up
the hash table to find the corresponding field and the allocation or-
der. If there are no entry, the access is not made to target structures
and it is unnecessary to our subset cache simulation.

We need to know the accessed field and the allocation order of
the structure instance, since these two pieces of information en-
able us to calculate the virtual address for the subset simulation.
For the subset simulation, we concurrently simulate multiple sub-
sets. Thus, we generate multiple virtual addresses for the subsets
that contain the corresponding field. When we generate the virtual
addresses for our cache simulations, we assume two conditions
shown in Fig. 5b, without loss of generality. First, we assume each
subset is the first group within its structure (Assumption 1). Since
we separately simulate each group and no conflict misses occur
among different groups in a pool, the placement of the group with-
in a pool does not change the cache behavior of hits and misses.
Second, we assume that all the pools for the same structure type
are consecutively placed from the address zero in the virtual ad-
dress space (Assumption 2). For the purpose of cache simulation,
we do not need the real addresses. We rather need relative dis-
tances among memory accesses. In addition to that, the size of a
pool is the same as the size of all cache lines of the same way in
each set. From the view of cache management, the mappings of
all the pools are completely overlapped one another. With this
observation, we can safely assume all the pools are consecutively
placed from the address zero.

Example of performance estimation: (a) cache behaviors obtained from profiling, (b) machine dependent parameters for overhead calculation, and (c) estimation of performance

variations for all groupings.

(a) Cache behaviors of all subsets

Group index Access freq. L1D hits L1D misses L2 misses
1: {key} 1000 950 50 5

2: {data} 100 90 10 1

3: {key, data} 1100 970 130 15

4: {next} 1050 990 60 6

5: {key, next} 2050 1950 100 10

6: {data, next} 1150 1000 150 18

7: {key, data, next} 2150 1960 190 25

(b) Machine dependent overhead

Instructions Cycles
L1D miss penalty 17
L2 miss penalty 165
AND, ADD, SUB, MOV 0.5
LEA 3
SAL, SAR 4
IMUL 14
IDIV 56

(c) Estimated performance overhead of all grouping combinations
Structure layout

Memory access overhead in cycles (A)

Extra instruction overhead in cycles (B) Overall overhead (A + B)

Subsets Group order
7: {key, data, next} 7 17°190 + 16525 0 7355
3: {key, data}, 34 17°(130 + 60)+ (141 +4'3+0.5'16)'1050 42,395
4: {next} 43 165°(15 +6) (42+0.56) 1100 18,795
5: {key, next}, 52 17(100 + 10)+ (4'1+0.52)'100 4185
2: {data} 2,5 165°(10+ 1) (141 +42+0.5'16) 2050 65,185
1: {key}, 16 17°(50 + 150)+ (42+0.56)1150 19,845
6: {data, next} 6,1 165(5 +18) (141 +4'3+0.5'16) 1000 41,195
1: {key}, 2: {data}, 4: {next} 1,2,4 (41+0.5°2) 100 4520
2,14 17°(50 + 10 + 60) + 165(5+1 +6) (141+42+0.516)1000+(141+42+0.516) 65,520
1050
4,12 (4'1+0.52)'100 4520

K. Shin et al./Journal of Systems Architecture 56 (2010) 136-149 141

From these two assumptions, the field address in a group can be
calculated by the following equation.

pool_address(g,) = |alloc_order /MaxObjCnt| x Size(pool)
rank = (alloc_order % MaxObjCnt)
address(f; in g,) = pool_address(g,) + rank x Size(g,) 1)

i-1
+ Y Size(fy in g,)
k=1

The pool_address(g,) indicates the beginning address of the pool
to which the group g, belongs. In Eq. (1), alloc_order represents the
allocation order of the structure instance among the instances of
the same structure type. MaxObjCnt is the maximum number of
structure instances we can allocate within a pool. For example,
since the sizes of pool and Node structure in Fig. 1 are 4096 and
14 bytes, respectively, MaxObjCnt is calculated as 4096/14 = 292.
The rank means the order within a pool. All the variables except
for alloc_order in this equation are all known at compile time. From
the hash table in Fig. 5, alloc_order can be determined.

For example, the hash table lookup of the accessed address,
0 x 1234, returns the structure type and field, Node.next and the
allocation order, 301 as shown in Fig. 5a . If we apply these
numbers to Eq. (1), we can calculate the pool address as
[301/292| x4K=0x 1000 and the rank as (301%292)=9 as
shown in Fig. 5c. The third equation consists of the beginning ad-
dress of the pool (pool_address), the group offset within this pool
(rank x Size(g,)), and the sum of the sizes of preceding fields within
this group. Fig. 5d shows how we generate the multiple virtual ad-
dresses for the primary subsets. Using Eq. (1), our cache simulator
generates the field addresses of four different subsets which con-
tain the field, next and proceeds to simulate the cache behaviors
for those four subsets. For the other three subsets, we do not gen-
erate the field addresses, as they do not contain the accessed field,
next.

3.3. Performance estimation of all subsets

In order to select the most promising field layout, estimating
cache misses is not enough. Since some layouts require extra
instructions to access fields, we need to take account of those
run time overheads as well. In this section, we discuss how to esti-
mate the instruction overheads involved in the field accesses. First
thing we need to do for the performance estimation is to generate
all possible groupings. This is equivalent to finding all partitions of
a set, which means there is no ordering among groups. Even
though we do not need the total ordering among groups, we should
select the first group in a pool. Since the extra instructions in the
calculations of the field offsets are unnecessary for the fields in
the first group, the overhead of extra instructions is only applied
to the rest of the groups [12].

For example, the first column of Table 1c shows all possible
groupings and corresponding group indexes for Node structure
from our motivating example in Fig. 1. The second column of Table
1c shows the order among groups. The first group has no overhead
in field accesses, while the other groups require extra instructions
to access fields [12]. Thus, we differentiate only the first group
from the rest of the groups and the group order reflects this fact.
To calculate the total overheads of a layout, we use the sum of
the cache miss penalties (the third column of Table 1c) and the ex-
tra instruction cycles (the fourth column of Table 1c). The sum of
the two overheads is shown in the fifth column of Table 1c. The
cache miss penalties are calculated by using the results from the
cache simulation of all subsets, which are shown in Table 1a. The
extra instruction overheads in the offset calculations are calculated
by using the machine specific parameters obtained from the archi-

tecture specification of Intel processors [18], which are shown in
Table 1b.

By placing the most frequently accessed group at the first posi-
tion, we can avoid much of the overhead involved in the field offset
calculation [12]. The size of the first group also affects the type of
extra instructions in the field offset calculations. If the size of the
first group is a power of two, offset calculations can be done with
shift operations instead of integer divisions. The fourth column of
Table 1c actually shows how to calculate the extra instruction
overhead for each subset. For example, the second structure layout
in Table 1c consists of two subsets, {key,data} and {next}, and the
subset {key,data} comes first. To calculate the memory overhead,
we find the number of cache misses for each subset from Table
1a. The numbers of L1D cache misses are 130 and 60 for the two
subsets ({key,data} and {next}), respectively. Referring to Table
1b, we find L1D miss penalty is 17 cycles. Thus, the total L1D miss
penalty is 17 x (130 + 60). We collect the number of misses for L2
cache and look up the L2 miss penalty in a similar way. The num-
bers of L2 cache misses are 15 and 6 for the two subsets, respec-
tively and the L2 miss penalty is 165 cycles. The calculation for
the total L2 miss penalty is 165 x (15 + 6). Finally, we add up the
L1D miss penalty and L2 miss penalty to calculate the memory ac-
cess overhead as in the third column of Table 1c.

In calculation of the extra instruction overhead, we take ac-
count of only the second subset, {next}, as accessing the first subset
involves no extra instructions. To access the field next, we need to
use one integer multiply (IMUL), three shifts (SAL, SAR), and six-
teen arithmetic instructions (AND, ADD, SUB, MOV). According to
Table 1a, the subset {next} is accessed 1050 times. To calculate
the extra instruction overhead, we obtain the average latency of
each instruction type from the Table 1b. The latencies are 14, 4,
and 0.5 cycles for integer multiply, shift, and arithmetic instruc-
tion,respectively. Using the latencies and the numbers of extra
instructions, we can calculate the extra cycles to access the field
next as 14 x 1 +4 x 3 +0.5 x 16. By multiplying the access fre-
quency of the field (1050 for next), we can estimate the extra
instruction overhead as in the forth column of Table 1c. The follow-
ing Eq. (2) is the generalized version to calculate the overhead for a
given subset. To calculate the total overhead of a layout, we need to
add up the overheads of all the subsets, which belong to this lay-
out, as shown in Eq. (3).

Overhead, = memory_access_penaltyforsubset,
+ extra_instruction_cyclesforsubset,
= L1D_misses(subset,) x L1D_miss_penalty
+ L2 _misses(subset,) x L2_miss_penalty

Fextra_instrs
+ (Z latency,-) x access_freq(subsety) 2)

icextra_instrs

subsets_in_layout

Overheadyq = Overhead, 3)
k

4. Experimental evaluation

We experimentally evaluate our reorganization technique on a
Linux PC with a 1.86 GHz Core2Duo processor and 3 GB main
memory. The processor has a 32 kB L1D cache per core and a
2 MB unified L2 cache. Both L1D and L2 caches are configured to
use 64 byte cache lines and 8-way set associative mapping. All
the benchmarks in our experiment are compiled with gcc 4.1.1
with -O3 optimization level. All the reported execution times are
average elapsed times out of five runs. For the cache simulation,

142 K. Shin et al./Journal of Systems Architecture 56 (2010) 136-149
Table 2
Characteristics of benchmark programs.

Benchmarks Target structures Inputs Cache Code
#Target #Fields in Small Large structures Cache misses in target Code size increase
structures each (for profile) structures (%) (binary) (%)

em3d 1 7 6 x 10° 7 % 108 62 3.5

health 4 34,76 10, 20 11, 50 78 8.1

mst 2 33 3000 9000 88 4.0

treeadd 1 B 24 27 35 25

tsp 1 7 2% 10° 4% 10° 85 3.6

voronoi 1 5 5% 10° 3 % 108 29 1.8

ft 2 54 10%,10° 10%,4.5 x 10° 96 1.5

181.mcf 2 15,8 Train Reference 11 0.9

we used the cachegrind from the tool suite of Valgrind version
3.1.0 [19].

To automate the code transformation, we extended the CIL com-
piler [17]. Once we determine the target structures and their field
layouts, our code transformer automatically transforms the source
code to use custom (de)allocation routines for target structures. In
custom allocation routine, we first allocate a large memory chunk
called bank and allocate multiple pools within the bank. We vary
the size of bank from 400 kB to 4 MB according to the amount of
data usage in applications. Our compiler also transforms the field
access code to an appropriate code sequence for the new field lay-
out. If fields are accessed through pointer arithmetic operations, we
cannot recognize the structure accesses even with a complex alias
analysis. Thus, we should check all target structures whether their
fields are accessed only by their field names. If any structures vio-
late this rule, they are excluded from the target structures.

We used eight benchmarks from several benchmark suites.
Em3D uses a linked list for an electromagnetic wave propagation
in a 3D object. Health simulates the Columbian health care, which
heavily uses double-linked lists. Mst uses arrays of single-linked
lists for a minimum spanning tree of a graph. Treeadd performs
recursive sum of values in a balanced B-tree. Tsp is a famous trav-
eling salesman problem solver, which uses a balanced binary-tree.
Voronoi computes the voronoi diagram of a set of points recursively
on the tree. The six benchmarks mentioned so far come from the
Olden benchmark suite [20]. Ft is also included due to its poin-
ter-intensive characteristics [21]. 181.mcf is a minimum cost net-
work flow solver from the SPEC CPU2000 benchmark suite [22].

Table 2 shows the characteristics of benchmark programs. The
second and third columns of Table 2 show the number of target
structures selected for our field reorganization and the number
of fields within those target structures. The next two columns
are the input parameters for the benchmarks used in our experi-
ments. The small inputs are used in profiling and the large inputs
are used to evaluate the effectiveness of our profile-based field
reorganization. The sixth column shows the percentage of cache
misses from the target structures among all the cache misses. This
is measured with small inputs. A relatively large portion of the
cache misses are originated from the target structures, since our
benchmark programs intensively use dynamically allocated data
structures. 181.mcf shows only the 11% cache misses from the
target structures, but its poor cache behavior notoriously hurts
the performance of this program. The last column shows the
percentage of the code size increase in binary executables after
transforming the programs to use the selected field layouts. Due
to the extra instructions for offset calculations and the custom
memory management routines, our transformed code increases
in the binary size by up to 8% for health, but less than 4% for the rest
of the benchmarks.

The size increase in health is far bigger than the others. Health
has four target structures and each target structure has its own

custom memory (de)allocation routines. These routines increase
code size by about 5%. If we provide a parameterized custom mem-
ory routine to handle the all four target structures, we could reduce
the size increase. In our automatic translation, this is handled
rather poorly, but it can be done in a careful translation. We also
observed that the selected layouts of two target structures need
extra instructions for field accesses at many statements of source
code. Those field accesses are, however, not executed frequently
at run time, resulting in little increase in dynamic instruction
counts. We discuss the changes of dynamic instruction counts later
in Section 4.3.

4.1. Accuracy of composition-based cache simulation

In order to justify our cache simulation approach, we compared
the cache misses from our composition-based simulation with the
ones from the original cache simulation. The number of cache
misses in our approach is obtained by summing up the cache
misses of the corresponding subsets in that layout. Since we focus
on only the cache misses of the target structures, we modified the
cachegrind to measure the cache misses only from the target struc-
tures. Our cache simulation could be imprecise, if the cache misses
from non-target data and other target structures interfere too
much. Thus, we devise two metrics, accuracy and disturbance.

For several field reorganization techniques, we obtained the
numbers of cache misses for the target structures using two cache
simulation methods. We performed our comparison on three dif-
ferent cache configurations in their set associativity. Fig. 6 shows
the accuracy of our composition-based cache simulation by dis-
playing the ratios of the L1D misses from two cache simulation
methods. The following Eq. (4) defines the accuracy metric with
the numbers of misses from two simulation approaches.

#misses(composition_based_simulation)
#misses(original_simulation)

Accuracy = (4)

Cmalloc uses a custom pool allocation similar to [16]. An exam-
ple of this layout is shown in Fig. 2c. DDRemap colocates same
fields from multiple structure instances as shown in Fig. 2a [9]. Sta-
tic is a static field affinity graph approach used in [13,14] and Fiel-
d_Affi is a profile-based field affinity graph approach used in [5,12]
Perf_Affi denotes our field reorganization approach, which takes ac-
count of the estimated cache misses and the extra instruction over-
heads. In a direct-mapped cache, our cache simulation method
produces inaccurate number of cache misses for each layout. On
the other hand, estimated misses in 4-way and 8-way set associa-
tive caches result in fairly accurate numbers. Error margins are less
than 10% for all layouts of all benchmarks except the DDRemap lay-
out of voronoi, which is nearly 20%. Inaccuracy in directed mapped
cache is expected, since target structures will conflict more with
non-target data and even with one another. As our composition

K. Shin et al./Journal of Systems Architecture 56 (2010) 136-149 143

O Cmalloc E DDRemap

O Static

B Field_Affi B Perf_Affi

1.0

04 1

0.2

composition-based)/#misses(orig.)

em3d health mst

orig.) #mi

1.2

treeadd

tsp voronoi ft 181.

(a) Direct mapped cache

04
0.2
0.0

position-based)/#mi
S S e
ENE-C—
i ——

C

em3d health mst

#mi

1.2

treeadd

tsp VOronoi ft 181.
mcf

(b) 4-way set associative cache

orig.)

1.0

04
0.2

0.0 —

em3d health mst

#misses(composition-based)/#mi
S e
(=)} =]
, ,
I I

treeadd

ft 181.
mcf

tsp voronoi

(c) 8-way set associative cache

Fig. 6. Accuracy of cache miss in L1D cache simulation for (a) Direct-mapped, (b) 4-way set associativity, and (c) 8-way set associativity.

Table 3
Disturbance of non-target data to cache performance estimation.

Benchmarks em3d (%) Health (%) mst (%) treeadd (%) tsp (%) voronoi (%) ft (%) 181.mcf (%)
DDREemAP -04 -3.5 -1.1 0.7 —-3.2 0.1 24 -23
FIELD_AFFI -0.4 —4.2 -2.5 0.4 —4.4 0.4 -29 —3.2
PERF_AFFI -0.3 -1.2 -0.3 0.0 -2.8 0.0 -31 -1.6

based simulation assumes no conflict misses other than the con-
flicts in the same subset, our cache simulation method is fitted
for set associative caches, which can tolerate conflict misses fairly
well. Most modern processors adopt the set associativity in their
caches to accommodate conflicting accesses. Thus, we believe our
composition-based cache simulation is a quite reliable method to
find the most beneficial layout on multi-way set associative caches.

Assuming the cache behavior of non-target data is rarely af-
fected by the layouts of target structures, our performance estima-
tion method only compares the cache performance of target
structures. If the cache behavior of non-target data abruptly
changes across different layouts for target structures, our cache

performance comparison will be incorrect due to the disturbance
from non-target data. In order to verify our performance estima-
tion method is valid, we introduce a metric, called disturbance,
which shows how much the misses from non-target data change
in a new structure layout. Our metric is defined as follows:

_ #misses(non_target, p) — #misses(non_target, Cmalloc)
N #misses(all data, p)

Disturbance(p)

x 100
©))
where #misses(D,P) is the number of cache misses from the data D,
when the layout P is used for the target structures.

144 K. Shin et al./Journal of Systems Architecture 56 (2010) 136-149

O Cmalloc

B DDRemap O Static

B Field_Affi M Perf Affi

Reduction in L1D read misses(%)

em3d health mst treeadd

181.

tsp voronoi ft
mcf

Avg.

(a) L1D read misses

Reduction in L2 read misses(%)

em3d health mst treeadd

181.

tsp voronoi ft Avg.

(b) L2 read misses

Fig. 7. Reductions in read misses of L1D and L2 cache with large inputs.

The disturbance is the percentage of the cache miss difference in
non-target data over all the cache misses from all data. Since Cmal-
loc has the same field layout as the original layout and the pool allo-
cation is used by all candidate layouts, we choose Cmalloc as the
base layout for disturbance metric. Table 3 shows the disturbances
of three different layouts for all benchmarks. The differences in
cache misses from non-target data ranges from —4.4% to 0.7% of
the cache misses for all data, which means the number of the cache
misses from non-target data does not change much from the base
case. A negative disturbance means the cache misses from non-tar-
get data are actually reduced, when different layouts are used for
target structures. Even though our cache miss estimation, which
considers only target structure, could be erroneous due to the dis-
turbance of non-target data and the error from composition-based
cache simulation for target structures, the sum of two errors was
still less than 10% of the actual misses for each tested layout. Only
exception is the DDRemap layout of voronoi, which is 20%.

4.2. Impact on cache performance

In order to evaluate the cache performance of our reorganiza-
tion technique, we measured the numbers of cache misses for all
benchmarks. We simulated the cache behavior with the same con-
figuration as the real machine on which we measured execution
times. Fig. 7 shows the reduction in L1D and L2 cache read misses
compared to the original layout. The simulation is done with large
inputs. CmaLLoc reduces read misses of L1D and L2 caches by 26%
and 13%, respectively. DDRemAP shows more cache misses than
Cmatroc in L1D cache misses for em3d and 181.mcf, and in L2 cache

misses for em3d, voronoi, and ft. These are pathological cases in
DDRemAP due to the padding spaces between fields [12]. Sraric
shows more cache miss reductions than CmaLLoc but less reductions
than the two profile-based approaches, Perr_Arri and FiELD_AFrI. PERr-
F_Arr1 and FieLb_AFrri result in more reductions in cache misses than
CwmaLioc. In tsp and 181.mcf, Pere_Arri shows less reductions than
Fietp_Arr. Since Perr_Arri takes the overhead from extra instructions
into account, it, even with more cache misses, eventually performs
better than FieLb_AF¥l.

To investigate if the cache line size has any impact on the effec-
tiveness of our technique, we simulated differently configured ca-
ches by changing L1D cache line size, but keeping the total cache
size the same. In this experiment, we used 32 kB L1D 8-way set
associative cache and 2 MB L2 8-way set associative cache. Since
we only vary the line size of L1D cache, we fix the line size of
the L2 cache to 64 bytes throughout this experiment. All the cache
misses in Fig. 8 are normalized to the number of cache misses of
OricINAL on 32 kB L1D with 64 byte lines and 2 MB L2 with 64 byte
lines. Fig. 8a shows the normalized L1D cache miss rates as the size
of L1D cache line varies from 16 to 128 byte. Fig. 8b shows their
corresponding L2 cache misses in normalized form.

In general, less cache misses are likely to occur, when cache
lines increase. According to our simulation results, we find similar
trends across different reordering methods. Only Ft shows a little
change across different L1D line size for most of cases except the
L1D misses of OriGINAL. PErF_AFrI achieves the best L1D and L2 com-
bined cache performance for all different L1D line sizes. Base on
these simulation results, our structure reorganization, we believe,
works well across various L1D cache line sizes.

5.0

K. Shin et al./Journal of Systems Architecture 56 (2010) 136-149

| —=—Original —s—Cmalloc —— Perf_Affi

4.0

cache misses

2 3.0

L1

T 20

1Z€

1.0 -

rmal

S 0.0

L1D
line size

163264128 163264 128 16 3264 128 16 3264 128 16 3264 128 16 3264 128 16 3264 128 16 3264 128 16 3264 128

em3d health mst treeadd tsp voronoi ft 181. Ave.

(a) L1D cache misses mef

14
1.2

1.0
0.8 A

=2 S Ay e

0.6 T\ \ A

0.4 -
0.2

0.0

= Normalized L2 cache misses

—

D

line size em3d health mst treeadd

163264128 163264 128 16 3264 128 16 3264 128

16 3264 128 16 3264 128 16 3264 128 16 3264 128 16 3264 128

tsp voronoi ft 181. Avg.
mcf

(b) L2 cache misses

Fig. 8. Variation of cache misses in (a) L1D and (b) L2 cache as L1D cache line size varies from 16 to 128 bytes. (Normalized to the number of cache misses for Original on 8 kB

L1D with 64 B lines and 512 kB L2 with 64 B lines).

O Cmalloc BEDDRemap 0O Static B Field Affi W Perf Affi

60

50

40

30

20

10

o [l

-19.4

Reduction in dynamic instruction counts (%)

em3d health mst treeadd

tsp voronoi
mcf

Fig. 9. Reductions in dynamic instruction counts with large inputs.

4.3. Impact on dynamic instruction counts

Fig. 9 shows the reductions in dynamic instruction counts com-
pared to the original programs. All reorganization methods shown
in the figure use pool allocation for target structures. By using cus-
tom memory management routines, we can reduce the dynamic
number of executed instructions by a large amount. Since we re-
place malloc() and free() with the custom memory manage-
ment routines, dynamic instruction counts are reduced in most
of benchmarks. In some layouts, however, dynamic instruction
counts are increased. This is mostly due to the extra instructions
in the field accesses for the new layout.

As for CmaLLoc, the average reductions are 17.3%. DDRemap, Staitc
and Fietb_Arr reduce dynamic instruction counts by 16.5%, 14.9%

and 14.8%, respectively. Reorganization methods, which particu-
larly employs field grouping in addition to Cmaloc method, tend
to execute more instructions than Cmatioc. To mitigate the penalty
of the extra instructions in field grouping, Perr_Arri takes the extra
instructions into account as well as the cache performance. Its
reduction in the dynamic instruction count is 16.8%, which is com-
parable to CmaLLoc.

If we take 181.mcf as an example, the reduction of the instruc-
tion count in Perr_AFr1 is much better than other layouts from Sratic
and Fiep_Arr, which select the best grouping result without
considering the extra instruction overheads. Our reorganization
method, Perr_AFrr, considers not only the cache performance but
also the extra instruction overhead. Our method avoids much of
the extra instruction overhead by placing the most frequently

146 K. Shin et al./Journal of Systems Architecture 56 (2010) 136-149

Table 4
Reductions in execution times for the different field reorganization techniques.

Benchmarks Input ORIGINAI (s) CmaALLoc (%) DDREemAP (%) StaTic (%) FieLo_AFri (%) Perr_AFFI (%)
em3d Small 1.36 4.1 0.1 0.4 4.7 6.4
Large 24.04 3.2 -0.1 0.1 2.7 5.9
Health Small 2.03 194 139 204 213 22.8
Large 26.2 5.1 7.9 124 11.8 14.8
mst Small 1.60 16.9 15.5 179 19.6 19.6
Large 41.78 13.0 15.0 15.9 16.5 16.5
treeadd Small 1.49 44.4 42.6 42.6 44.4 44.4
Large 13.2 46.3 45.2 45.2 46.3 46.3
tsp Small 1.49 4.6 5.2 7.7 13.2 144
Large 224 5.5 6.5 6.6 7.9 9.3
voronoi Small 1.44 5.9 1.0 5.6 5.9 6.2
Large 12.4 1.5 1.0 14 1.6 1.6
ft Small 1.31 46.1 41.1 47.6 423 48.7
Large 46.62 16.5 6.9 18.4 10.3 18.5
181.mcf Small 7.48 0.0 8.0 3.4 49 10.7
Large 107.61 0.0 17.0 14.2 16.5 18.4
Average Small - 17.7 15.9 18.2 19.5 21.7
Large - 114 124 14.3 14.2 16.4
Both - 14.5 14.2 16.2 16.9 19.0
O Cmalloc B DDRemap O Static B Field_Affi B Perf_Affi
~~
X 50
N’
8 45
£
-
= 35
£ 30
=
g 25
e
@ 20
g
g 15
= 10 T
2 5
T
~ ’ H 181
em3d health mst treeadd tsp voronoi ft : Avg.
mcf

*
Fig. 10. Reductions in execution times with large inputs (for 181.mcf means the pool allocation is already used in the original program.).

accessed group at the beginning, but still selecting a layout with a
good cache performance.

4.4. Impact on execution times

Table 4 shows the reductions in the execution times for various
layouts obtained by several reorganization methods. We perform
the experiments with the two sets of inputs for each benchmark.
For the profile-based methods, DDRemAP, FieLb_Arri and Perr_AFFI,
the small inputs are used during the profile to determine the layout
and the performance for the large inputs are measured with the
same layout as the small inputs. Fig. 10 also graphically shows
the reductions in execution times performed with large inputs.

The experimental results show that our Perr_Arri method
achieves better performance than the other methods. CmaLLoc and
DDRemaP reduce the execution times by 14.5% and 14.2%, respec-
tively. Static and Fiewp_Arri shows 16.2% and 16.9% reductions,
respectively. These two methods commonly use the field affinity
graph, but Static uses the static access patterns based on regular
expressions, while FiLen_Arri counts the neighboring accesses with-
in the access window. Perr_AFri, our proposed method, shows 19.0%
reduction, which is the best reduction overall. For all benchmarks
we tested, Perr_AFri consistently performs better than other meth-

ods. The shaded numbers in Table 4 represent the best perfor-
mance for the benchmark with the specified input. For all cases,
Perr_Arr finds the best performance. Since our reorganization
method, Perr_AFri, considers not only the cache performance but
also the overheads in extra instructions, the results shown in Table
4 and Fig. 10 confirm that our method accurately estimates the ac-
tual performance differences across multiple layouts and finds the
best performing layout. When other methods also find the same
layout as Perr_AFri, they also achieve the same performance as Per-
_AFrL. For mst, Fieto_Arr finds the same layout and for treeadd, CmaAL-
toc and Fieto_Arr find the same layout.

Compared to Static method, our profile-based Perr_Arri method
improves the average performance by 3%. Improvements over Sta-
Tic are more noticeable for em3d and 181.mcf, which are 6% and 4%
for large inputs. Even though our profile-based method does not
show a large improvement over the static method, our method is
still a valid approach to find the best performance for the impor-
tant applications that need to be optimized to the extreme.

4.5. Cache simulation times

Cache simulation is expensive, even though we use the subset
simulation for composition. When the number of fields is small,

K. Shin et al./Journal of Systems Architecture 56 (2010) 136-149 147

Table 5

Time comparison between exhaustive runs and composition-based cache simulation for all feasible layouts.
Benchmarks #Fields in target Orig. exec. time Best exec. time #All feasible Estimated exhaustive run time Cache simulation time Ratio of

structures (s) (s) layouts (A) (s) (B) (s) BJA

em3d 7 1.4 13 3263 4242 526 0.12
health 34,76 2.0 1.6 3984 6374 893 0.14
mst 33 1.6 1.3 20 26 810 313
treeadd 3 1.7 0.9 10 9 568 63.3
tsp 7 1.5 1.3 3263 4242 522 0.12
voronoi 5 14 1.4 151 211 216 1.02
ft 54 1.3 0.7 188 132 43 0.32
181.mcf 15,8 7.5 6.7 8.6 x 10° 5.8 % 10'° 5725 0.00

exhaustively running a program with all feasible layouts could be a
lot faster than the cache simulation. Table 5 compares the total
time of exhaustive running with the required time of our composi-
tion-based cache simulation. The second column shows the num-
bers of fields for selected target structures. For example, four
structures are selected in health and the numbers of fields for those
structures are 3, 4, 7, and 6, respectively. The third column and the
forth column show the execution times of the original programs
and the best execution times with the best field layouts. The fifth
column is the number of all feasible layouts with the field reorga-
nization. If multiple target structures are selected for an applica-
tion, the numbers of all feasible layouts for all structures are
added up. The sixth column represents the estimated execution
times, when we exhaustively run the benchmark multiple times
with all feasible layouts. These numbers are minimally estimated
by multiplying the best execution time (the fourth column) and
the number of all layouts (the fifth column). The seventh column
represents the total time for our composition-based simulation,
which includes the target structure identification, the trace extrac-
tion, and the cache simulation for all subsets. The eighth column
shows the ratio of the composition-based cache simulation to the
exhaustive run. If the ratio is less than 1, the composition-based
cache simulation is faster. Otherwise, the exhaustive run is faster.

According to our experiments, our composition-based cache
simulation is a faster approach to find the best performing layout
for five benchmarks. For those benchmarks, our composition-base
cache simulation takes only a small fraction of the time required
for exhaustive runs. Exceptions are the cases in mst, treeadd, and
voroni. For mst and treeadd, the numbers of feasible layouts are
only 10 to 20. In these cases, exhaustive runs can find the best per-
forming ones. For voronoi, the number of feasible layouts is 151,
which results in that the exhaustive run requires almost the same
as the our cache simulation method. In general, our approach is
faster than exhaustive runs, if the number of fields in target struc-
tures is large or the application takes long time enough to discour-
age the exhaustive runs.

5. Related work

Reorganizing data has been a popular topic in the high-perfor-
mance computing community. For example, high-performance for-
tran (HPF) compilers provide user annotation for array layout to
achieve better cache behavior according to the access patterns of
loops [23]. While early studies often focus on the layout of stati-
cally allocated data alone, recent studies take account of dynami-
cally allocated data as well, since many complex applications
tend to use more dynamically allocated data from the heap.

Field reorganization in structures particularly shows effective-
ness in improving spatial and temporal locality by transforming
the layouts of the heap-allocated structures [3-6,8-14].

Truong et al. proposed an approach to reorganize the fields of
structure-type data [3]. Their method first attempts to aggregate
fields from multiple structure instances with consideration of

cache alignment. Using this field interleaving scheme, rarely used
fields are moved away from frequently used fields.

Chilimbi et al. proposed an optimization technique that splits
structures into a frequently accessed portion and a rarely accessed
portion based on the profiles of field access frequencies [5]. By split-
ting hot fields from the whole structures they can reduce the amount
of data brought into the cache memory and achieve the performance
improvement on several Java applications. This is a similar effect to
what Truong et al. [3] achieved using field interleaving.

Huang et al. also introduced online object reordering scheme to
improve data locality of Java applications [24]. It periodically sam-
ples the currently executing method and identifies hot objects.
During the copying process in the garbage collection, frequently
accessed objects are placed adjacent to their related objects to in-
crease spatial locality.

Kistler and Franz partitioned a dynamically allocated data struc-
ture to fitinto a single cache line if the structure size is larger than the
cache line size [6]. During partitioning, the data fields whose acces-
ses are close together in time are placed in the same cache line to
maximize data locality. Then, data fields in a cache line are ordered
to minimize load latency in case of cache misses. This technique
has, however, a limitation in that padding spaces are needed if a
structure size is not a multiple of a cache line size.

Rabbah and Palem proposed a vertical field layout that consec-
utively places the same fields from multiple structure instances by
using customized allocation routines and compile-time transfor-
mations of field offset calculations [9]. Their approach is similar
to Truong’s approach [3] in that the same fields from multiple
structure instances are consecutively placed.

Zhong et al. proposed k-distance analysis to find a hierarchical
partition of the program data based on their reference affinity
model [10]. Reference affinity represents the degree of closeness
in reference traces among a group of data. With the resulting hier-
archical partition, they reorganize the whole program data by
regrouping arrays and splitting structures.

Rubin et al. presented a framework that recognizes profiled ac-
cess patterns with a context free grammar. If they find the same
access patterns they already simulated, they reuse the previous
cache simulation results to reduce the simulation time of a given
access pattern for a given layout [8]. They iteratively searches all
possible candidate data layouts and select the best performing
one. Our approach is similar in that we also simulate all the
candidate layouts, but our approach is orthogonal to theirs. Our
approach reduces the cache simulation times for multiple candi-
date layouts by simulating primary subsets of fields and compos-
ing the simulation results from the results of the subset
simulations. On the other hand, their approach reduces the cache
simulation time for a data layout by reusing the simulation
results in repeated access patterns.

Lattner and Adve describe an automatic pool allocation, which
segregates different instances of data structures into separate
memory pools [16]. They determine target structures based on
the context-sensitive pointer analysis and the escape property for

148 K. Shin et al./Journal of Systems Architecture 56 (2010) 136-149

the data structures. They show that their technique can allow more
effective compiler optimizations and reduce the working sets of
the programs, potentially improving the cache performance.

Hundt et al. develop a framework that analyzes profitability of
structure layout transformation with or without profile informa-
tion [11]. Their framework is capable of structure splitting, struc-
ture peeling, dead field removal, and field layout restructuring.
Their optimizations are based on field affinity relations, which uses
profiled or estimated field reference counts in tightly executed
modules like loops, while we simulate the cache behavior with
composition-based techniques and take account of extra instruc-
tions in transformed layouts.

Our paper extends our previous studies of field reorganization
that colocates fields from multiple structure instances and groups
closely related fields [12-14]. In our previous works, we use a field
affinity graph to extract the affinities between fields. The field
affinity graph associates co-access frequencies of fields with every
edge in the graph. We obtain co-access frequencies of fields by pro-
filing [12] or static approach [13,14]. Our static approach extracts
run-time behaviors from source codes using Control Flow Graph
(CFG) and transforms CFG into regular expressions. Regular expres-
sions are used to represent memory access behaviors and the clo-
sures in regular expressions are handled like loops. We can build
the field affinity graphs by calculating the weights of edges using
the nesting depth of closures.

These graph based methods do not consider computation over-
head due to the layout change and often get trapped in local opti-
ma. In this paper, we present a new profile-based structure
reorganization method, which uses the composition-based cache
simulation and considers computation overhead to estimate the
performance of all possible layouts.

6. Conclusion

We present an advanced field reorganization method for multi-
ple heap-allocated structures. Our field reorganization technique
improves the cache performance by aggregating, compacting, and
grouping fields from multiple instances of the same structure type.
To find the best performing field layout, we propose a performance
estimation method which uses the composition-based cache simu-
lation along with the consideration of the extra instructions. With
the resulting field layouts, our compiler automatically transforms
the source programs to correctly access the fields in the reorga-
nized layouts.

Experimental evaluation demonstrates our reorganization tech-
nique further improves the performance on top of the benefit from
the pool allocation. Compared to the original programs, our field
reorganization reduces the cache misses by 37% in the L1D cache
and by 28% in the L2 cache. As a result, the execution time is reduced
by 19%, which is an additional 5% over the pool allocation alone and
an additional 3% over the static approach. We believe our field reor-
ganization method is effective to optimize the important programs
to the extreme, if they intensively use heap-allocated structures.

Acknowledgement

This work was supported by the Ministry of Knowledge Econ-
omy, Korea, under the Information Technology Research Center
support program (IITA-2009-C1090-0902-0020).

References

[1] S. Carr, K.S. McKinley, C.-W. Tseng, Compiler optimizations for improving data
locality, in: Proceedings of Conference on Architectural Support for
Programming Language and Operating System (ASPLOS'94), 1994, pp. 252-
262.

[2] M.E. Wolf, M.S. Lam, A data locality optimizing algorithm, in: Proceedings of
Conference on Programming Language Design and Implementations (PLDI'91),
1991, pp. 30-44.

[3] D.N. Truong, F. Bodin, A. Seznec, Improving cache behavior of
dynamically allocated data structures, in: Proceedings of Conference on
Parallel Architectures and Compilation Techniques (PACT'98), 1998, pp. 322-
329.

[4] T.M. Chilimbi, M.D. Hill, J.R. Larus, Cache-conscious structure layout, in:
Proceedings of Conference on Programming Language Design and
Implementations (PLDI'99), 1999, pp. 1-12.

[5] T.M. Chilimbi, B. Davison, J.R. Larus, Cache-conscious structure definition, in:
Proceedings of Conference on Programming Language Design and
Implementations (PLDI'99), 1999, pp. 13-24.

[6] T.Kistler, M. Franz, Automated data-member layout of heap objects to improve
memory-hierarchy performance, ACM Transactions on Programming
Languages and Systems 22 (3) (2000) 490-505.

[7] P. Panda, F. Catthoor, N. Dutt, K. Danckaert, E. Brockmeyer, C. Kulkarni, A.
Vandercappelle, P. Kjeldsberg, Data and memory optimization techniques for
embedded systems, ACM Transactions on Design Automation of Electronic
Systems 7 (2) (2001) 149-206.

[8] S. Rubin, R. Bodik, T.M. Chilimbi, An efficient profile-analysis framework for
data-layout optmizations, in: Proceedings of Symposium on Principles of
Programming Languages (POPL'02), 2002, pp. 140-153.

[9] R.M. Rabbah, K.V. Palem, Data remapping for design space optimization of
embedded memory systems, ACM Transactions on Embedded Computing
Systems 2 (2) (2003) 186-218.

[10] Y. Zhong, M. Orlovich, X. Shen, C. Ding, Array regrouping and structure
splitting using whole-program reference affinity, in: Proceedings of ACM
SIGPLAN Conference on Programming Language Design and Implementations
(PLDI'04), 2004, pp. 255-266.

[11] R. Hundt, S. Mannarswamy, D. Chakrabarti, Practical structure layout
optimization and advice, in: Proceedings of the International Symposium on
Code Generation and Optimization (CGO’06), 2006.

[12] K. Shin, J. Kim, S. Kim, H. Han, Restructuring field layouts for embedded
memory systems, in: Proceedings of Design Automation and Test in Europe
(DATE’06), 2006, pp. 937-942.

[13] J. Jeon, K. Shin, H. Han, Layout transformations for heap objects using static
access patterns, in: Proceedings of International Conference on Compiler
Construction (CC'07), 2007, pp. 187-201.

[14]]. Jeon, K. Shin, H. Han, Abstracting access patterns of dynamic memory using
regular expressions, ACM Transactions on Architecture and Code Optimization
5 (4) (2009) (Article 18).

[15] E. Petrank, D. Rawitz, The hardness of cache conscious data placement, in:
Proceedings of Symposium on Principles of Programming Languages
(POPL'02), 2002, pp. 101-112.

[16] C. Lattner, V. Adve, Automatic pool allocation: Improving performance by
controlling data structure layout in the heap, in: Proceedings of Conference on
Programming Language Design and Implementation (PLDI'05), Chigago,
Illinois, 2005, pp. 129-142.

[17] G.C. Necula, S. McPeak, S.P. Rahul, W. Weimer, Cil: Intermediate language and
tools for analysis and transformation of c programs, in: Proceedings of
Conference on Compiler Construction (CC'02), 2002, pp. 213-228.

[18] Intel Corporation, IA-32 Intel Architecture Optimization Reference Manual,
April 2006. Available from: <http://developer.intel.com>.

[19] Valgrind, a suite of tools for debugging and profiling linux programs, <http://
www.valgrind.org/>.

[20] Olden benchmark, <http://www.cs.princeton.edu/-mcc/olden.html>.

[21] Pointer-intensive benchmark suite, <http://www.cs.wisc.edu/austin/ptr-dist.
html>.

[22] Standard Performance Evaluation Corporation, SPEC CPU2000 Integer
Benchmark, 2000.

[23] High Performance Fortran Forum, High Performance Fortran Language
Specification, Version 1.0, Tech. Rep. CRPC-TR92225, Center for Research on
Parallel Computation at Rice University, 1993.

[24] X. Huang, S. Blackburn, K. McKinley,]J. Moss, Z. Wang, P. Cheng, The garbage
collection advantage: Improving program locality, in: Proceedings of ACM
SIGPLAN Conference on Object-Oriented Programming Systems, Languages
and Applications (OOPSLA’04), 2004, pp. 69-80.

Keoncheol Shin received the BS and the MS degrees in
Computer Science from KAIST, Korea in 2002 and 2004.
He is currently a Ph.D. student at KAIST, Korea. His
research interests are in the field of software optimi-
zation, in particular compiler techniques to exploit data
locality in cache memory and parallelism embedded in
source code. He is broadening the applications of soft-
ware optimization to the parallelism in graphic appli-
cations and data manipulation in transactional memory
systems.

http://developer.intel.com
http://www.valgrind.org/
http://www.valgrind.org/
http://www.cs.princeton.edu
http://www.cs.wisc.edu
http://www.cs.wisc.edu

K. Shin et al./Journal of Systems Architecture 56 (2010) 136-149 149

Hwansoo Han received the BS and the MS degrees in
computer engineering from Seoul National University,
Korea in 1993 and 1995, and the Ph.D. degree in Com-
puter Science from the University of Maryland at Col-
lege Park in 2001. He is currently an associate professor
at Sungkyunkwan University, Korea. Previously, he
served as an associate professor at KAIST and as a senior
engineer at Intel. His research interests include com-
piler technology for high-performance computing,
embedded computing, and secure computing.

Kwang-Moo Choe received the BS degree in electronic
engineering from Seoul National University, Korea in
1976 and the MS and PhD degrees in Computer Science
from KAIST, Korea in 1978 and 1984, respectively. He is
currently a professor at KAIST, Korea. Previously, he
worked as a member of technical staff at AT&T Bell Labs,
Murray Hill. His research interests include formal lan-
guage theory, parallel evaluation of logic programs and
optimizing compilers.

	Composition-based Cache simulation for structure reorganization
	Introduction
	Motivation
	Performance estimation
	Composition-based cache simulation
	Cache simulation of all subsets
	Performance estimation of all subsets

	Experimental evaluation
	Accuracy of composition-based cache simulation
	Impact on cache performance
	Impact on dynamic instruction counts
	Impact on execution times
	Cache simulation times

	Related work
	Conclusion
	Acknowledgement
	References

