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PAPER

An Analysis for Fast Construction of States in the

Bottom-Up Tree Pattern Matching Scheme

Kyung-Woo KANG†, Kwang-Moo CHOE††, and Min-Soo JUNG†††, Nonmembers

SUMMARY In this paper, we propose an efficient method of
constructing states in bottom-up tree pattern matching with dy-
namic programming technique for optimal code generation. This
method can be derived from precomputing the analysis which is
needed for constructing states. The proposed scheme is more ef-
ficient than other scheme because we can avoid unfruitful tests
in constructing states at compile time. Furthermore, the rele-
vant analyses needed for this proposal are largely achieved at
compile-compile time, which secures actual efficiency at compile
time.
key words: compilers, code generator generator, tree grammar,
dynamic programming

1. Introduction

Many code generators (CG) accept an intermediate rep-
resentation (IR) in a tree structure and convert it to an
equivalent target program. The tree structure is proper
for representing semantic of source program efficiently
and its manipulation is considered easy [15]. Since the
development of bottom-up tree pattern matching by
Hoffman and O’Donnell [5], the bottom-up tree pattern
matching has been accepted as a practical technique
for CG and a code generator generator (CGG) [1], [2],
[4], [6], [7], [11], [14], [15]. The specification of the CGG
which is actually the machine specification contains the
tree grammar which consists of rules. Each rule has a
cost associated with its semantic action.

The bottom-up tree pattern matching scheme is
much faster than any other tree pattern matching
scheme theoretically [5], [12]. The Bottom-Up Rewrite
System (BURS) theory is efficient because Dynamic
Programming (DP) can be done at compile-compile
time [11], [15]. However, BURS has the restriction that
the costs used in the tree grammar must be constant.
The bottom-up tree pattern matching scheme adapting
DP at compile time allows the arbitrary cost values [6],
which admit a larger class of tree grammars [11] but
may cause inefficiency at compile time. This paper de-
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scribes a program that reads a machine specification
and writes a bottom-up tree pattern matching scheme
that does DP at compile time.

We emphasize the efficiency of the bottom-up tree
pattern matching scheme which allows the arbitrary
cost values. The bottom-up tree pattern matching
scheme with DP [6] traverses the IR tree twice. In the
first traversal, the scheme computes a state at every
node of the IR tree in a bottom-up direction. A state
can be extracted along the sequence of the rules. In
the second traversal, the scheme will find the least-
cost cover in a top-down direction. Then a target code
is produced by executing the semantic actions for the
rules used for the least-cost cover. Previous scheme [6]
computes a state using all rules in the given sequence.
However, we can infer that only reduced number of
rules can be used in computing states, which is our pri-
mary intention. To implement our intention, we firstly
transform the sequence of rules into several sets called
match set and the match set transition tables. A match
set is a set of patterns which must be used for construc-
tion of a state. The state of a node can be computed
using a match set which is determined from the match
sets of its child nodes using the transition tables. In this
paper, the transition tables are hard coded into code
generator which uses bottom-up tree pattern matching
scheme with dynamic programming.

In Sect. 2, definitions and background are intro-
duced. In Sect. 3, we propose an efficient method of
constructing states. In Sect. 4, we show experimental
results for the scheme. A summary and the concluding
remarks are given in Sect. 5.

2. Definitions and Background

We describe a representing scheme for bottom-up tree
pattern matching with DP, upon which our study is
based. Moreover, necessary definitions for presenting
proposals in Sect. 3 will be described.

An alphabet (written as Σ) is a finite set of op-
erators denoted as a, b, c, . . .. Each operator has a
fixed arity (written as arity(a) ≥ 0). We write Σn for
{a | arity(a) = n}. The tree language over Σ (written
as TΣ) is defined as follows:

• a is a tree in TΣ, if a ∈ Σ0.
• a(t1, . . . , tn) is a tree in TΣ, if a ∈ Σn and t1, . . . , tn
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are trees in TΣ.

A subtree of a tree is identified through its position
which is a sequence of relative integers from the root of
the tree. Position of a node of a tree t ∈ TΣ is defined
by a sequence of relative integers from the root to the
node. If t = a(t1, . . . , tn), then Pos(t) = {ε} ∪ {i · p′ |
1 ≤ i ≤ n, p′ ∈ Pos(ti)}. If p ∈ Pos(t), then the
subtree t/p of t is defined as follows:

• t/p = t, if p = ε and
• t/p = ti/p

′, if t = a(t1, . . . , tn) and p = i · p′.
The set of positions Pos(t) of a tree t is partially or-
dered by 
; For p1, p2 ∈ Pos(t) such that p1 �= ε and
p2 �= ε, p1 
 p2 ⇐⇒ i < j or i = j, p′1 
 p′2 where
p1 = i · p′1, p2 = j · p′2.

A set V is a countably infinite set of variables de-
noted as v1, v1, v3, . . .. Each variable is a symbol of arity
zero to be replaced by a tree t ∈ TΣ∪V . The pattern is
a tree in TΣ∪V . When there are no constraints between
values used to replace any two variables, the pattern is
called linear.

A substitution is a map Θ : V → TΣ∪V which can
be extended to all trees by defining a(t1, . . . , tn)Θ =
a(t1Θ, . . . , tnΘ) for every n-ary operator a (n > 0). tΘ
is also written as t[t1\v1, . . . , tn\vn] if the set of the
variables occurring in t is {v1, . . . , vn} and viΘ = ti for
all i. Assume that α is a pattern in TΣ∪V . α matches a
tree t if there exists a substitution Θ such that αΘ = t.

Definition 1: A tree grammar is a quadruple G =
(N , Σ, R, S) where

• N is a finite set of nonterminals denoted as
A,B, . . ..

• Σ is the alphabet of terminals denoted as a, b, . . ..
• R is a finite set of rules of the form A→ α with α

in TΣ∪N and A in N . α,A are also called pattern.
Each rule has an associated cost such as c(A→ α).

• S is a special nonterminal and it represents start
symbol.

✷

A rule r : A → α is of type (A1, . . . , An) → A if the
i-th nonterminal in α is Ai [10]. For a left side α of
the rule r, the pattern α̃ is defined as a pattern in
TΣ∪{v1,...,vn} such that α̃ is obtained from α by replac-
ing, for 1 ≤ j ≤ n, the j-th nonterminal by a variable
vj [10]. For a tree grammar G, we define a-rules as the
set of rules such that a-rules = {A → a(t1, . . . , tn) ∈
R | a ∈ Σn and for 1 ≤ i ≤ n, ti ∈ TΣ∪N}. A rule of
the form A → α is called normal form if α is a pat-
tern of the form either X ∈ Σ0 ∪ N or a(A1, . . . , An)
where a ∈ Σn and A1, . . . , An ∈ N . A tree grammar
is called normal form if all rules are in normal form.
Any tree grammar can be converted into normal form
tree grammar by introducing several nonterminals and
rules [1]. In this paper, the tree grammar is assumed

to be a normal form.
A cover of t ∈ TΣ∪N to A is a sequence of pairs

〈rule, position〉 ∈ R × Pos(t). If τ is a cover of t/p to
X , then τ satisfy the following conditions:

• If τ = ε then t = X
• If τ = τ1 · · · τn〈r, p〉 for some rule r : A →
α ∈ R of type (X1, · · · , Xn) → A, then t/p =
α̃[t1\v1, · · · , tn\vn] and τi is a cover of ti to Xi for
1 ≤ i ≤ n.

The last rule(written as last(τ)) of a cover τ is defined
as follows. If τ = 〈r1, p1〉 · · · 〈rn, pn〉 and ri ∈ R for
1 ≤ i ≤ n then last(τ) = rn. The tree language of G
relative to α (written as L(G,α)) is:

• {t ∈ TΣ | ∃τ : τ is a cover of t to A} if α = A ∈ N .
• {t ∈ TΣ | t = α̃[t1\v1, · · · , tn\vn] and ∃τi : τi is a

cover of ti to Ai for 1 ≤ i ≤ n} if α = a(A1, · · · ,
An).

The cost associated with a cover τ is the sum of the
costs associated with each rule in the cover (written as
C(τ) which is the extension of cost of a rule):

• If τ = ε then C(τ) = 0.
• If τ = 〈r1, p1〉 · · · 〈rn, pn〉 then C(τ) =

∑n
i=1 C(ri).

In covers of t to A, one cover with the minimum cost is
called least-cost cover of t to A (written as LCV (t, A)).
Then the goal of the tree pattern matching scheme is to
find the LCV (t, S). Evaluation procedure of LCV (t, A)
consists of two phases. The first phase annotates a state
on each node of the IR tree t in a bottom-up way. A
state is a set of triples (nonterminal, rule, cost) which is
called an item. In an item, rule and cost are computed
for nonterminal [6]. The state annotated on the root
node of t = a(t1, . . . , tn) is {(B, cost(t, B), rule(t, B)) |
B ∈ N} where

• cost(t, B) = min{∑n
i=1 ci + C(r)+C(τ) | r : B′ →

α ∈ a-rules and if r is type (B1, . . . , Bn) → B′,
then ci is cost(ti, Bi) for 1 ≤ i ≤ n and τ is a cover
of B′ to B}.

• rule(t, B) = last(τ) such that τ is a cover of t to
B and C(τ) = cost(t, B).

In the second phase, the scheme finds the least-
cost cover of t to A while traversing the IR tree
in a top-down direction. If s is the state anno-
tated on the root node of t/p, then LCV (t, B) =
LCV (t1, B1) · · ·LCV (tn, Bn) · 〈r, p〉 where (B, c, r:B →
α) ∈ s, r is of type (B1, . . . , Bn) → B and t =
α̃[t1\v1, . . . , tn\vn].

3. An Efficient Method of Constructing States

In the previous work of [6], the cost (cost(t,A)) is eval-
uated from a sequence of all rules in a-rules when com-
puting an item in the state. We can infer that only re-
duced number of rules can be used in computing states.
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Table 1 Numbers of tree patterns to be checked.

x86 m68k sparc mips
Programs iburg ours iburg ours iburg ours iburg ours

array.c 1582 841 1339 791 755 642 633 529
cf.c 609 379 617 410 375 320 321 270
cq.c 93008 48336 102616 64587 57484 48477 44654 36479

fields.c 1318 701 1098 758 633 532 580 480
sort.c 1180 655 1344 751 679 563 574 469

struct.c 968 495 959 620 842 727 479 399
switch.c 2650 1461 2558 1555 1486 1312 1346 1178
front.c 180 104 231 134 88 78 78 68

Table 2 Numbers of tree patterns to be checked.

x86 m68k sparc mips
iburg ours iburg ours iburg ours iburg ours

Time(sec) 9.1 8.8 9.3 9.1 8.2 8.1 7.5 7.5

This is the point we are claiming in this paper, and we
will propose an efficient method of constructing states.

The match set of a tree t is a set of the patterns
α such that (A→ α ∈ R or α ∈ N) and t ∈ L(G,α). If
m is the match set of t, then m is calculated as follows:
m = {α | r : A→ α ∈ R and if r is type (A1, . . . , An) →
A then t = α̃[t1\v1, . . . , tn\vn], ∃τi : τi is a cover of ti
to Ai for 1 ≤ i ≤ n}∪{B | ∃τ : τ is a cover of α to B
for α ∈ m} (cf [5]).

All possible match sets (Q = {m | t ∈ TΣ,m
is the match set of t}) can be computed at compile-
compile time. The transition tables among match sets
can be computed at compile-compile time. These tran-
sition tables are used for the efficiency of construc-
tion of states. The transition tables are defined as
follows: δa : (QN)n → Q, µa : Q × [1, n] → QN

where QN = {N ∩ m | m ∈ Q} and a ∈ Σn. We
assume that t = a(t1, . . . , tn), m is the match set of
t and mi is the match set of ti for 1 ≤ i ≤ n. Let
qi = mi ∩ {Ai | A → a(A1, . . . , Ai, . . . , An) ∈ a-
rules} for 1 ≤ i ≤ n. We define µa(mi, i) = qi and
δa(q1, . . . , qn) = m.

Algorithm 1: Let G = (N,Σ, P, S) be a tree gram-
mar. The sets Q, δa and µa are iteratively determined
by Q =

⋃
0≤j Q

(j), δa =
⋃

0≤j δ
(j)
a and µa =

⋃
0≤j µ

(j)
a

where

1. Q(0) = ∅, δ(0)a = ∅ and µ(0)
a = ∅ for all a ∈ Σ;

2. Assume j>0. For a∈Σn andm1, . . . ,mn ∈ Q(j−1)

such that mi ∩ {Ai | A→ a(A1, . . . , Ai, . . . , An) ∈
a-rules} �= ∅. Let qi = mi ∩ {Ai | A →
a(A1, . . . , Ai, . . . , An) ∈ a-rules} for 1 ≤ i ≤ n.
Let m = {α | For each r : A → α ∈ R of type
(A1, . . . , An) → A such that r ∈ a-rules, Ai ∈ qi
for 1 ≤ i ≤ n} ∪ {B | ∃τ : τ is a cover of α
to B for α ∈ q}. If m �= ∅ then m ∈ Q(j) and
δ
(j)
a (q1, . . . , qn) = m and µ(j)

a (mi, i) = qi.

Since Q(j) ⊆ Q(j+1) for 0 ≤ j, iteration can be termi-
nated as soon as no new states are generated. Therefore
Q = Q(j), δa = δ

(j)
a and µa = µ

(j)
a for the first j with

Q(j) = Q(j+1). ✷

In this paper, it is a primary intention that we use the
set Q, δa and µa to evaluate cost(t, A) of state effi-
ciently.

Theorem 1: Assume that the state annotated on the
root node of t = a(t1, . . . , tn) is {(A, cost(t, A), rule
(t, A)) | A ∈ N}, m is the match set of t and mi is
the match set of ti for 1 ≤ i ≤ n. If µa(mi, i) = qi for
1 ≤ i ≤ n and δa(q1, . . . , qn) = m, then cost(t, A) =
min{∑n

i=1 ci + C(r) + C(τ) | r : B → α ∈ a-rules,
α ∈ m and if r is type (A1, . . . , An) → B, then ci is
cost(ti, Ai) for 1 ≤ i ≤ n and τ is a cover of B to A}.

✷

Also we describe another speed-up technique which can
be applied when there is only one pattern in a match set
to compute the state. From the definition of the state,
it is required that each nonterminal has only one cost,
and its value is relative to that of the other nontermi-
nals in the match set. When one pattern of the match
set is α, the evaluation of cost(t, A) is simplified as fol-
lows: cost(t, A) = min{C(r) + C(τ) | r : B → α ∈ R
and τ is a cover of B to A}.

4. Experimental Results

Based on the Algorithm 1, the CGG proposed in this
paper is implemented for experiment and comparison
with the related work iburg. Our CGG is a modified
version of iburg which produces a CG of lcc [4]. iburg
is a recently developed CGG adopting the bottom-up
tree pattern matching with DP technique at compile
time. We show improvements in compile time by the
experiment on MC68000, x86, mips and sparc CGs.
Relevant statistics for the CGs are shown in Table 1.
The standard of the comparison is the number of tree
patterns checked in computing the state at each node.
The C programs which were tested are the test suites
of lcc. Table 2 shows amount of time required in com-
piling C program (5317 lines) by two versions of lcc
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(original version and our version). Those amounts are
required in compilation only; times spent in prepro-
cessing, assembly, and linking time are excluded. Test
compilations were executed on on the Sparc2/40 station
with 48 MB under SunOS Release 4.1.2. The time in
Table 2 means the lowest elapsed time in seconds cho-
sen among the results of several experimentations on a
lightly loaded machine (i.e., (user + system)/elapsed ≥
0.95).

5. Concluding Remarks

In this paper, we proposed an efficient method of con-
structing states in bottom-up tree pattern matching
with DP in the CG. The task of computing a state is
divided into two parts; the computation of the match
set, the computation of the state. Although the state
cannot be computed at compile-compile time because of
the evaluation of costs, the match sets can be computed
at compile-compile time. We transform the sequence of
rules into several match sets and several transition ta-
bles. If the match sets and the transition tables is used
in constructing the states, then the pattern matcher can
avoid about 40% unfruitful tests. However, the size of
matcher is larger because the match sets may have com-
mon rules. In Addition, we would like to point out that
some part of the analyses required in our method can
be applied at compile-compile time, which may secure
practical efficiency at compile time.
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